Synopsis: Uneven Turbine Placement Improves Wind Farms

Wind-tunnel experiments show that uneven positioning of the turbines in a wind farm can improve its power output.
Synopsis figure
Bel Air Aviation Denmark—Helicopter Services

A turbine harvesting power from the wind disrupts the flow of air, decreasing its velocity and the amount of energy available to downstream turbines. This wake effect can have a huge impact on the efficiency of wind farms, reducing the average power output per turbine by up to 50%. So scientists are searching for ways to minimize this loss by suitable placement of the turbines with respect to each other. Juliaan Bossuyt and colleagues at the Catholic University of Leuven, Belgium, and Johns Hopkins University, Baltimore, now show that, for large wind farms, uneven spacing of the turbines along the prevailing wind direction optimizes the power output.

For wind farms with several rows of turbines, wake effects can spread to the entire width of the farm. In the past, researchers studied the effect of turbine density on power output using simulations. But studying the effect of the turbines’ spatial arrangement would be computationally too demanding. So, to examine this aspect, the team built a wind farm in their lab. They used 100 miniature turbines made of porous disks, testing over 56 different configurations in a wind tunnel. They found a greater power output with uneven row spacing than with even spacing. In the optimal configuration, the turbines were arranged in pairs of closely spaced and slightly misaligned rows, with larger spacings between each of the pairs. These results emphasize that the optimization of local airflow in wind farms can produce accelerations that are beneficial to the power output.

This research is published in Physical Review Fluids.

–Nicolas Doiron-Leyraud

Nicolas Doiron-Leyraud is a Corresponding Editor for Physics.


Features

More Features »

Announcements

More Announcements »

Subject Areas

Energy ResearchFluid Dynamics

Previous Synopsis

Next Synopsis

Nuclear Physics

Revamping the Skyrmion Model

Read More »

Related Articles

Focus: Leaf-Like Veins Are Key to Efficient Pump
Fluid Dynamics

Focus: Leaf-Like Veins Are Key to Efficient Pump

A network of “veins” improves performance for a leaf-mimicking pump that could be used in microfluidics devices. Read More »

Viewpoint: A Crowd Freezes Up
Complex Systems

Viewpoint: A Crowd Freezes Up

Dense flocks of beads flowing in a channel can “freeze” like ice—a unique type of phase transition that may be applicable to human crowds. Read More »

Synopsis: Hydrodynamic Cloaks
Fluid Dynamics

Synopsis: Hydrodynamic Cloaks

Two separate groups have designed structures that can hide objects from fluid flows and surface waves so that no wake is visible. Read More »

More Articles