Synopsis: Different routes for reconnection

Magnetic field lines in moving plasmas can break and reform, releasing large amounts of energy. Simulations suggest this happens in a two stage process—one slow and smooth, the other rapid and chaotic.
Synopsis figure

Reconnection occurs in moving plasmas when magnetic field lines come together, snap, and reform. These events can release tremendous amounts of energy and researchers believe that magnetic reconnection may help trigger powerful solar flares and contribute to auroral phenomena in Earth’s ionosphere.

Despite extensive study, however, reconnection events remain puzzling. Reconnection occurs in very localized regions, so how can the energy release be magnified to large scales and operate quickly enough to explain observations of astrophysical events? In the 13 June issue of Physical Review Letters, Giovanni Lapenta of the Katholieke Universiteit Leuven in Belgium reports simulations of reconnection that reveal two different scenarios. In the first, called the Sweet-Parker process, reconnection occurs slowly and smoothly as laminar magnetic field lines merge in a local region, but then a second and faster reconnection mechanism is possible. In this scenario, reconnection is rapid and chaotic, with many small regions of reconnection occurring randomly. These chaotic islands of reconnection in turn create energetic plasma circulation patterns that increase the speed of reconnection.

Such two-stage events, where slow reconnection evolves into fast self-feeding turbulent reconnection, may explain very large-scale energy release in highly magnetized astrophysical plasmas, but more needs to be done to compare the simulations with observational data. - David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Plasma Physics

Related Articles

Viewpoint: Free-Electron Laser Does the Twist
Plasma Physics

Viewpoint: Free-Electron Laser Does the Twist

Researchers have used a free-electron laser to produce vortex radiation at extreme-ultraviolet wavelengths. Read More »

Synopsis: Neutrons On-Demand from Laser Fusion
Nuclear Physics

Synopsis: Neutrons On-Demand from Laser Fusion

A new laser-driven fusion method could lead to a robust and efficient way to generate neutrons for use in materials science, geology, and other fields. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

More Articles