Synopsis

Landau levels in a nanotube

Physics 1, s15
The formation of Landau levels in a magnetic field is the hallmark of a two-dimensional electron system, such as graphene. Experiments now suggest that Landau levels can also form in carbon nanotubes.

Some fifteen years ago, theorists predicted that high magnetic fields would modify the electronic band structure of a carbon nanotube. Two signatures of this were expected to show up experimentally: the Aharonov-Bohm effect, for a magnetic field along the axis of the nanotube, and the formation of Landau levels, for a field that is perpendicular to the axis. While the former has been observed, Bertrand Raquet and colleagues at the Laboratoire National des Champs Magnétiques Pulsés in Toulouse report in Physical Review Letters the first observation of the onset of Landau levels in a carbon nanotube.

Raquet et al. designed a nanotube-based Fabry-Pérot resonator, which is a nanotube (connected to a silicon substrate) that acts as an effective electron waveguide. The conductance through the nanotube waveguide oscillates with the strength of a magnetic field that is applied perpendicular to the carbon nanotube—a signature the electrons are occupying low-energy Landau levels. The observation is particularly relevant to the physics of graphene, where the charge carriers behave like massless Dirac fermions. - Sami Mitra


Subject Areas

Mesoscopics

Related Articles

Electrical Conductance Reveals Complex Fractals
Graphene

Electrical Conductance Reveals Complex Fractals

Researchers find that a phenomenon called multifractality manifests in the conductance fluctuations of a 2D electron gas as the gas undergoes a topological phase transition. Read More »

Microdrop Concentrates Light Modes
Mesoscopics

Microdrop Concentrates Light Modes

Tiny oil droplets levitated in optical tweezers can host several hundred light modes with similar energies, a feature that could be exploited for sensing and telecommunications. Read More »

Sensing Single Spins in Dense Spin Baths
Mesoscopics

Sensing Single Spins in Dense Spin Baths

The measurement of a single nuclear spin in a noisy spin environment opens up new possibilities for quantum technologies. Read More »

More Articles