Synopsis: Putting the squeeze on many atoms

Squeezed states can enhance the sensitivity of a detector and the storage capability of quantum memory devices. Because these features improve with an increase in system size, researchers are exploring ways to produce squeezed states in large ensembles of atoms.
Synopsis figure

In quantum mechanics, a squeezed state is characterized by two noncommuting observables, where one observable has a small variance at the expense of a large variance in the other, so that the uncertainty principle is satisfied. There is currently interest in preparing macroscopic squeezed states as this would improve the storage capability of quantum memory devices, such as atomic ensembles that store a state of light that can later be read out optically.

A macroscopic spin state—composed of many individual spins—can be squeezed provided that entanglement can be created within the system. Writing in Physical Review Letters, researchers at the Niels Bohr Institute in Copenhagen report the creation of a spin squeezed state in an ensemble of spin-polarized cesium atoms. They take advantage of entanglement between the nuclear and electronic spin states of the individual ground state atoms, rather than between the electronic spin states of different atoms in the ensemble.

At room temperature, about 1012 cesium atoms, each with a total spin of 4, are confined to a glass cell placed in a magnetic field. An applied laser pulse puts about 98% of the atoms into a state maximally polarized along one axis, creating a coherent spin state (a minimum uncertainty state) with macroscopic spin. Another light pulse creates the entanglement necessary to put the ensemble in a squeezed state. A tomographic reconstruction of the final quantum state verified that a collective spin squeezed state was produced. – Sonja Grondalski


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Next Synopsis

Related Articles

Viewpoint: Spin Gyroscope is Ready to Look for New Physics
Optics

Viewpoint: Spin Gyroscope is Ready to Look for New Physics

An enhanced version of a magnetometer based on atomic spins could be used to search for theoretically predicted exotic fields with ultrahigh sensitivity. Read More »

Viewpoint: X-Ray Probe Targets Interfaces
Optics

Viewpoint: X-Ray Probe Targets Interfaces

A new spectroscopy technique employs x rays from a free electron laser to measure the properties of interfaces that may be hidden within a material. Read More »

Viewpoint: A Multimode Dial for Interatomic Interactions
Optics

Viewpoint: A Multimode Dial for Interatomic Interactions

A tunable multimode optical cavity modifies interactions between atomic condensates trapped in its interior from long range to short range, paving the way towards exploring novel collective quantum phenomena. Read More »

More Articles