Synopsis: Imaging colloids

High-intensity x-ray measurements show how suspended particles in a narrow channel are attracted to—or repelled from—the channel walls depending on the ionic concentration of the suspension. These results could have implications for the design of nanofluidic devices.
Synopsis figure

The motion of colloidal particles in nanofluidic devices depends subtly on the ionic charges that form on the walls of the container, the surfaces of the particles, and in the surrounding solution. The many-body effects in this sort of system are often prohibitive to calculate and must be compared with images of real systems.

Writing in Physical Review Letters, Dillip Satapathy and colleagues of the Paul Scherrer Institut in Switzerland and collaborators in the Netherlands and at the ETH in Zurich demonstrate how x-ray diffraction techniques can measure the concentration profile of a suspension of negatively charged silica spheres, 60 nm in size, confined to a narrow, submicron channel. The heart of their experimental set-up is a periodic array of channels that acts as a diffraction grating for incoming x-rays. When the channels are filled with a colloidal suspension, the intensity of the x-ray diffraction peaks depends on the distribution of the particles in the suspension. At low salt concentrations, the group finds that the colloidal particles move toward the center of the channels, but at higher salt concentrations, the particles are attracted to the walls, leaving the center part of the channel open. At still higher salt concentrations, the particles again move to the center of the channel.

Satapathy et al. conjecture that the ionic concentration of the solution screens the Coulomb repulsion between the particles and the walls, which are also negatively charged in solution. The result is of practical interest because it shows that the aperture of the channel depends on how ionic the solution is—the type of effect that could be the basis of a nanofluidic device. – Jessica Thomas


More Features »


More Announcements »

Subject Areas

Soft Matter

Previous Synopsis

Nuclear Physics

Error tracking

Read More »

Next Synopsis


Soliton starter

Read More »

Related Articles

Synopsis: Even Flocks are Topological
Soft Matter

Synopsis: Even Flocks are Topological

A flocking model that describes birds and cells exhibits topological features when the moving entities are confined to a curved surface. Read More »

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains
Materials Science

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains

Simulations of porous materials exhibit internal stress patterns like those in granular materials, despite the fact that these two systems are practically “negative images” of each other. Read More »

Focus: Bacteria Form Waveguides
Biological Physics

Focus: Bacteria Form Waveguides

A laser beam sent through a suspension of marine bacteria pulls the organisms into the beam, which focuses the light. Read More »

More Articles