Synopsis: Hidden symmetry unraveled

From conservation laws to selection rules, symmetry arguments have long been revered for their far-reaching consequences in physics. Now they point to an effective spin-orbit coupling in antiferromagnetic conductors.
Synopsis figure
Illustration: Alan

Writing in Physical Review Letters, Revaz Ramazashvili of Université Paris-Sud in Orsay urges us to examine an interesting effect in antiferromagnetic conductors in an applied magnetic field. Using group theory, he shows that the usual Zeeman splitting for electron spins vanishes when the magnetic field is oriented exactly perpendicular to the preferred magnetization axis of the antiferromagnet. The hidden-symmetry protection against the Zeeman splitting leads to a novel momentum dependence of the transverse electron g-factor, which Ramazashvili denotes the “Zeeman spin-orbit coupling.” Notably, this is a low-dimensional effect and in a three-dimensional material it would only be active on a two-dimensional surface.

The generality of the advanced arguments implies that, in principle, the effect could be found in a number of highly relevant antiferromagnetic materials such as cuprates, borocarbides, iron pnictides, and heavy-fermion compounds. Interestingly, the new effective spin-orbit coupling suggests that the spins associated with charge carriers could be manipulated with an AC electric field without destroying spin coherence. This capability is at the heart of such intensely pursued spintronics applications as the spin transistor. Ramazashvili’s proposal has to be carefully explored further, though, since other spin-orbit coupling tools have had only limited success. – Yonko Millev


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Interdisciplinary Physics

Zooming out on complex networks

Read More »

Next Synopsis

Related Articles

Focus: Germanium Revived from the Spintronics Graveyard

Focus: Germanium Revived from the Spintronics Graveyard

Germanium produces a surprisingly large separation of electron spins in response to electric current—good news for spin-based devices, since germanium is highly compatible with silicon. Read More »

Synopsis: Revealing a Hidden Spin Polarization
Condensed Matter Physics

Synopsis: Revealing a Hidden Spin Polarization

Photoemission spectroscopy has detected two different populations of spin-polarized electrons that are “hidden” within a layered, graphene-like material. Read More »

Synopsis: Flip-Flopping the Bands

Synopsis: Flip-Flopping the Bands

A pair of semiconductor quantum wells with an inverted band structure hosts electrons whose spins are almost all in the same quantum state.   Read More »

More Articles