Synopsis: Cosmic consistency check

At the current time, we cannot tell if Einstein’s cosmological constant—or some other theory—is the correct description for dark energy in the Universe. A proposed measure based on existing data may help us to better distinguish these ideas.
Synopsis figure

The leading interpretation of why the expansion of the Universe is apparently accelerating is the presence of dark energy. Long before the supernova observations that indicated an accelerating Universe, Einstein proposed the idea of a cosmological constant, which says that dark energy homogeneously fills all of space as a constant energy density. Numerous other ideas, involving the variation of dark energy in time and space, have gained substantial interest. However, it is difficult to distinguish among them with either present data or those expected to be available in the next few years.

The main sources of these data are measurements of how the luminosity of supernovae depends on redshift and therefore distance. To interpret these data with dark-energy theories requires necessarily oversimplified parametrizations and assumptions (based on inferences from other data) about the matter density and curvature of the Universe. In a paper appearing in Physical Review Letters, Caroline Zunckel of Oxford University and Chris Clarkson of the University of Cape Town develop a new approach, which could more independently distinguish among dark-energy theories. They introduce a new measure, based only on luminosity-distance data, which does not require knowledge of the cosmic matter density and would be zero if the cosmological constant is correct. Conversely, finding a nonzero value would indicate that some other explanation of dark energy must be valid.

This test alone would be unable to firmly establish the cosmological constant as the unique picture of dark energy, but it would considerably narrow the possibilities. – Stanley Brown


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Next Synopsis


Waving, one by one

Read More »

Related Articles

Synopsis: Model Tries to Solve Five Physics Problems at Once
Particles and Fields

Synopsis: Model Tries to Solve Five Physics Problems at Once

A minimal extension to the standard model of particle physics involves six new particles. Read More »

Viewpoint: Dark Matter Still at Large

Viewpoint: Dark Matter Still at Large

No dark matter particles have been observed by two of the world’s most sensitive direct-detection experiments, casting doubt on a favored dark matter model. Read More »

Viewpoint: Connecting the Bright and Dark Sides of Galaxies

Viewpoint: Connecting the Bright and Dark Sides of Galaxies

A universal law shows that the rotation of a disk galaxy is determined entirely by the visible matter it contains, even if the disk is mostly filled with dark matter. Read More »

More Articles