Synopsis: Waving, one by one

The optical equivalent of electron oscillations in periodic lattices has now been described by a fully quantum mechanical theory.
Synopsis figure

Bloch oscillations occur when electrons are driven by an external field through a periodic potential, such as that of a crystal. The phenomenon is usually interpreted in terms of the electron wave Bragg scattering off the periodic potential, causing the electron to oscillate rather than translate through the lattice. The optical analog of this effect is described in a classical picture as electromagnetic waves bouncing off a periodic structure. Writing in Physical Review Letters, Stefano Longhi of Politecnico di Milano in Italy has now formulated a fully quantum mechanical theory showing that nonclassical light consisting of only particle-like quanta can also produce optical Bloch oscillations.

Longhi considers photonic structures, where the spatial structure of the index of refraction of the material creates energy bands and band gaps analogous to those for electrons in solids, and applies a fully quantized photon field to them. He studies two situations. In the first case, photons interact with a simple singly periodic structure, and the author follows the photon number distribution as a function of distance, finding that the photons undergo Bloch oscillations just like classical particles. In a doubly periodic structure, two photon input states undergo correlated Bloch oscillations, meaning that the photons exhibit bunching and entanglement because the photons can tunnel between two energy bands. Longhi’s results may be applicable to fabricating and analyzing photonic structures useful for achieving more complex entanglements for optical quantum computing. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Cosmology

Cosmic consistency check

Read More »

Next Synopsis

Nanophysics

Spinning on a gold atom

Read More »

Related Articles

Focus: Modeling Imperfections Boosts Microscope Precision
Optics

Focus: Modeling Imperfections Boosts Microscope Precision

A theoretical model of light spreading and scattering improves precision of position and size measurements made with an optical microscope by as much as 100 times. Read More »

Synopsis: Attosecond X-Ray Flashes
Optics

Synopsis: Attosecond X-Ray Flashes

X-ray free-electron lasers have been used to generate single spikes of hard x rays that are only 200 attoseconds long. Read More »

Focus: Vortices of Light on the Cheap
Optics

Focus: Vortices of Light on the Cheap

A simple laser setup has spontaneously produced nonuniform polarization patterns called vector vortices. Read More »

More Articles