Synopsis: Is turbulence here to stay—or not?

Turbulent states in a pipe do eventually decay, but you may have to wait for an extremely long time to prove it.
Synopsis figure
Illustration: Courtesy of B. Hof

When liquid flows through a pipe, both laminar and turbulent flow can coexist. An underlying conceptual question is whether turbulence is generally of a transient nature, or if it can be sustained beyond some critical point? This is not a trivial question since turbulent states can appear stable for incredibly long times before they suddenly collapse.

The majority of recent studies support the view that, beyond a critical Reynolds number, turbulent flow turns into a sustained (attractive) state. By measuring the lifetime of turbulent states in a pipe over eight orders of magnitude in time, Björn Hof, Alberto de Lozar, Dirk Jan Kuik, and Jerry Westerweel at the Max Planck Institute in Göttingen, Germany, and at the Delft University of Technology, The Netherlands, provide convincing evidence that no such critical point exists. Rather, according to their measurements, all turbulent states in a pipe are transient and, to answer the question, not here to stay. – Deniz van Heijnsbergen


Features

More Features »

Subject Areas

Fluid Dynamics

Previous Synopsis

Next Synopsis

Biological Physics

Molecular side step

Read More »

Related Articles

Synopsis: Capillary Effect in Grains Explained
Soft Matter

Synopsis: Capillary Effect in Grains Explained

Numerical simulations show that a previously observed capillary-like action in vibrating grain systems is due to convective motion of the grains.   Read More »

Synopsis: Drops Act Like Tension “Compasses”
Fluid Dynamics

Synopsis: Drops Act Like Tension “Compasses”

A liquid drop’s shape can be used to detect tension anisotropies in an underlying elastic membrane. Read More »

Focus: Why Sediments Are So Uniform
Fluid Dynamics

Focus: Why Sediments Are So Uniform

A new theory suggests that sedimenting particles of irregular shape will drift horizontally as they fall, a result that may resolve a long-standing puzzle. Read More »

More Articles