Synopsis: Protein diffusion

The shapes of “binding proteins” contribute to the ease with which they can diffuse along DNA until they reach a specific sequence.
Synopsis figure
Illustration: Alan Stonebraker

Proteins that selectively bind to DNA play an active part in regulating transcription and separating double stranded DNA into single strands.

The binding protein finds its attachment point—a sequence of specific nucleotides—by a process of diffusing in the volume around the DNA and along the DNA strand itself. However, the ease with which the protein diffuses along the DNA until it finds the right sequence is surprising, given that the positively charged proteins should be attracted to the typically negatively charged DNA at any site along the strand.

Writing in Physical Review Letters, Vincent Dahirel and colleagues at Université Paris 6, France, demonstrate with simulations how geometry—namely, the relative shapes of the DNA and binding protein—affects the electrostatic force between the two molecules and the ease with which the protein can diffuse.

Dahirel et al. model the DNA as a solid cylinder and the protein as a variety of solid shapes with different curvatures: a sphere, a cylinder, and a cylinder or square block with a concave “nook.” Both molecules are assumed to be in an ionic solution.

What the group finds is that when the protein surface compliments that of the DNA, that is, it is convex with a similar curvature, there is a repulsive electrostatic force between the molecules at very short distances. The finding provides an explanation that reconciles the site specificity of the protein with its ability to diffuse easily: the protein is attracted to the vicinity of the DNA, but doesn’t adhere until it reaches the site with the right sequence, where hydrogen bonds overcome the short-range repulsive force. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Superconductivity

Height matters

Read More »

Next Synopsis

Related Articles

Synopsis: Explaining Grid-Cell Firing
Biological Physics

Synopsis: Explaining Grid-Cell Firing

A model explains why grid cells—neurons that are part of the brain’s positioning system—fire electrical pulses in hexagonal patterns. Read More »

Synopsis: Bacteria Never Swim Alone
Biological Physics

Synopsis: Bacteria Never Swim Alone

Simulations and theory indicate that the “synchronized swimming” of bacteria occurs in much sparser suspensions of the microorganisms than expected. Read More »

Synopsis: Sensing Earthly Magnetic Fields
Magnetism

Synopsis: Sensing Earthly Magnetic Fields

An organic material’s resistance changes measurably in weak magnetic fields, with a sensitivity similar to that of migrating birds. Read More »

More Articles