Synopsis: The fast and the random

The fastest known random number generator based on a physical process comes from intensity fluctuations in the light from a chaotic laser.
Synopsis figure

Message encryption, Monte Carlo simulations, and electronic gambling machines all rely on random number generators. With a computer algorithm, it is only possible to generate numbers in a pseudorandom way, since once one figures out the algorithm itself, the sequence of numbers can be known. For applications that require higher security, means of generating true, or nondeterministic, random numbers become necessary.

The intensity fluctuation in light from a chaotic laser, made chaotic by external optical feedback, has an unpredictable output, which approximately repeats itself at the round trip time of the external cavity. If this quasiperiodicity can be eliminated, the signal can be used to rapidly generate sequences of nondeterministic random bits. In a paper appearing in Physical Review Letters, Igor Reidler, Yaara Aviad, Michael Rosenbluh, and Ido Kanter from the Bar-Ilan University in Israel use a simple edge-emitting semiconductor laser to create a chaotic signal with a broad frequency spectrum and short, spiking intensity fluctuations. Reidler et al. sample the output laser intensity at a rate of 2.5GHz and store the measured value of the signal as 8bits, which they subtract from the previous value, and then truncate to obtain a random bit string. The differentiation and truncation eliminate the quasiperiodicity of the optical signal and the concatenated bit strings stream out at a rate of 12.5Gbits/s.

The generated stream passes the NIST and Diehard tests for randomness and is currently the fastest random number generator based on a physical process. – Sonja Grondalski


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsNonlinear Dynamics

Previous Synopsis

Mesoscopics

Artificial graphene

Read More »

Next Synopsis

Atomic and Molecular Physics

Making monopoles

Read More »

Related Articles

Focus: Modeling Imperfections Boosts Microscope Precision
Optics

Focus: Modeling Imperfections Boosts Microscope Precision

A theoretical model of light spreading and scattering improves precision of position and size measurements made with an optical microscope by as much as 100 times. Read More »

Synopsis: Attosecond X-Ray Flashes
Optics

Synopsis: Attosecond X-Ray Flashes

X-ray free-electron lasers have been used to generate single spikes of hard x rays that are only 200 attoseconds long. Read More »

Focus: Vortices of Light on the Cheap
Optics

Focus: Vortices of Light on the Cheap

A simple laser setup has spontaneously produced nonuniform polarization patterns called vector vortices. Read More »

More Articles