Synopsis: The shortest known photon pulses

A model of the quark-gluon plasma predicts it could emit the sort of ultrashort light pulses that would be useful for high-speed spectroscopy.
Synopsis figure
Illustration: A. Ipp et al., Phys. Rev. Lett. (2009)

Interest in performing spectroscopy with enough spatial and temporal resolution to track atomic and molecular motion is pushing scientists to generate ultrafast photon pulses. Although lasers are normally the focus of this effort, some of the shortest known photon pulses are actually produced in high-energy atomic collisions, particularly those that occur in the formation of the quark-gluon plasma (QGP).  This new state of matter is produced over nuclear sizes 10 femtometers (10-15m) and lasts up to a few yoctoseconds (10-24s).

Writing in Physical Review Letters, Andreas Ipp, Christoph H. Keitel, and Jörg Evers at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, model the photon emission from the QGP and predict that pulses on the yoctosecond scale should occur.  These shortest of pulses have energies in the GeV range and can potentially be used to perform ultrafast time-resolved experiments in atomic and nuclear physics. Another significance of the work lies in its potential to shed new light on the equilibration processes that occur in the QGP, many aspects of which are still poorly understood. – Abhishek Agarwal


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Atomic and Molecular Physics

Orientation without perturbation

Read More »

Next Synopsis

Graphene

The rules of disorder

Read More »

Related Articles

Viewpoint: Trapped Ions Test Fundamental Particle Physics
Atomic and Molecular Physics

Viewpoint: Trapped Ions Test Fundamental Particle Physics

New precision experiments using trapped molecular ions provide an alternative method for determining if the electron has an electric dipole moment. Read More »

Synopsis: Dark Photon Conjecture Fizzles
Particles and Fields

Synopsis: Dark Photon Conjecture Fizzles

The lack of so-called “dark photons” in electron-positron collision data rules out scenarios in which these hypothetical particles explain the muon’s magnetic moment. Read More »

Viewpoint: A Doubly Charming Particle
Particles and Fields

Viewpoint: A Doubly Charming Particle

High-precision experiments at CERN find a new baryon containing two charm quarks. Read More »

More Articles