Synopsis: Collective action in dusty plasma

A new phonon mode has been observed in a two-dimensional plasma crystal.
Synopsis figure
Illustration: L. Couëdel et al., Phys. Rev. Lett. (2009)

Plasmas containing charged microparticles—sometimes called dusty plasmas—offer a way to study complex collective phenomena not usually accessible with conventional ionized media. Two-dimensional microparticle suspensions in plasmas are particularly valuable as they can be easily imaged to capture their full phase-space behavior. Under the right conditions, these particles can arrange themselves into crystalline patterns that melt, recrystallize, and support shock waves and solitons.

Dusty plasmas are known to support in-plane oscillation modes, just like acoustic phonons in regular crystals. Now, Lénaïc Couëdel and co-workers at the Max-Planck Institute for Extraterrestrial Physics in Germany report in Physical Review Letters their observations of an out-of-plane (transverse) phonon mode in a plasma.

The plasma crystal was formed from a suspension of 9μm plastic microspheres confined by an rf discharge above a horizontal metal electrode in argon gas. A horizontal laser sheet illuminated the particle monolayer from the side and a top-view video camera captured the intensity variations as the particles moved up and down in the Gaussian profile of the laser beam. Fourier transforms of the data yield dispersion curves of the in-plane and out-of-plane plasma oscillation modes, which clearly show both acoustic and optical phonons. With this improved visualization method and a more complete catalog of collective behavior in hand, researchers should be able to tackle more subtle interactions in these strongly coupled two-dimensional systems. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Fluid DynamicsPlasma Physics

Previous Synopsis

Magnetism

No strain, no gain

Read More »

Next Synopsis

Quantum Information

Eliminating charge noise

Read More »

Related Articles

Synopsis: Neutrons On-Demand from Laser Fusion
Nuclear Physics

Synopsis: Neutrons On-Demand from Laser Fusion

A new laser-driven fusion method could lead to a robust and efficient way to generate neutrons for use in materials science, geology, and other fields. Read More »

Focus: Why Sediments Are So Uniform
Fluid Dynamics

Focus: Why Sediments Are So Uniform

A new theory suggests that sedimenting particles of irregular shape will drift horizontally as they fall, a result that may resolve a long-standing puzzle. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

More Articles