Synopsis

Imaging molecular breakup

Physics 2, s120
A new tool is developed to study dynamics of molecular dissociation under electron bombardment.
Illustration: H. Adaniya et al., Phys. Rev. Lett. (2009)

When low-energy electrons approach molecules, they can attach to them, forming negative ions, rather than scatter. For many molecules this process results in dissociation, leaving neutral and ionic fragments behind. This process plays a key role in radiation damage and can, for instance, cause double-strand breaks in DNA. It is not surprising, therefore, that the electron dynamics in this process called Dissociative Electron Attachment (DEA) is under much investigation, in particular for water, which is ubiquitous in living tissue. However, a clear picture of DEA is lacking for the deceptively simple water molecule due to the complex nuclear and electronic dynamics involving several transient states.

In a recent paper published in Physical Review Letters, Hidehito Adaniya and collaborators from Lawrence Berkeley National Laboratory and the University of California, Davis, both in the US, and Goethe University, Germany, have developed a new approach to probe DEA in water. By combining the calculation of the electron attachment probability in the molecular frame, obtained using ab initio methods, with momentum imaging measurements of the angular distribution of the ionic fragments in the laboratory frame, Adaniya et al. create a powerful reaction microscope. The technique is shown to work even when the standard axial recoil approximation, requiring that the recoil axis not rotate during dissociation, breaks down. This new approach opens the window for studying the dissociation of more complex molecules. – Deniz van Heijnsbergen


Subject Areas

Atomic and Molecular PhysicsChemical Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles