Synopsis: Imaging molecular breakup

A new tool is developed to study dynamics of molecular dissociation under electron bombardment.
Synopsis figure
Illustration: H. Adaniya et al., Phys. Rev. Lett. (2009)

When low-energy electrons approach molecules, they can attach to them, forming negative ions, rather than scatter. For many molecules this process results in dissociation, leaving neutral and ionic fragments behind. This process plays a key role in radiation damage and can, for instance, cause double-strand breaks in DNA. It is not surprising, therefore, that the electron dynamics in this process called Dissociative Electron Attachment (DEA) is under much investigation, in particular for water, which is ubiquitous in living tissue. However, a clear picture of DEA is lacking for the deceptively simple water molecule due to the complex nuclear and electronic dynamics involving several transient states.

In a recent paper published in Physical Review Letters, Hidehito Adaniya and collaborators from Lawrence Berkeley National Laboratory and the University of California, Davis, both in the US, and Goethe University, Germany, have developed a new approach to probe DEA in water. By combining the calculation of the electron attachment probability in the molecular frame, obtained using ab initio methods, with momentum imaging measurements of the angular distribution of the ionic fragments in the laboratory frame, Adaniya et al. create a powerful reaction microscope. The technique is shown to work even when the standard axial recoil approximation, requiring that the recoil axis not rotate during dissociation, breaks down. This new approach opens the window for studying the dissociation of more complex molecules. – Deniz van Heijnsbergen


More Features »

Subject Areas

Atomic and Molecular PhysicsChemical Physics

Previous Synopsis

Next Synopsis

Related Articles

Synopsis: Entangling Atoms by Sculpting their Wave Functions
Quantum Physics

Synopsis: Entangling Atoms by Sculpting their Wave Functions

Two atoms in a cavity are entangled by carving off unwanted parts of the wave functions that describe them. Read More »

Synopsis: A Dark Side for Qubits
Quantum Information

Synopsis: A Dark Side for Qubits

Dark solitons in a Bose-Einstein condensate could, according to calculations, function as qubits with long lifetimes. Read More »

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave

Viewpoint: Measuring the Tidal Force on a Particle’s Matter Wave

The effect of the tidal force, which is directly related to the curvature of spacetime, on an individual particle’s wave function has been measured with an atom interferometer. Read More »

More Articles