Synopsis

How to find a “leptophobic” Z′ boson at the LHC

Physics 2, s126
A striking new six-lepton signal is proposed to find a so-far unseen heavy spin-1 boson that does not couple directly to leptons.
Illustration: Courtesy of CERN; photograph by Maximilien Brice

The first collisions have just been observed at the Large Hadron Collider (LHC), which is now the world’s highest energy accelerator. Two of the central goals of the LHC are to find the Higgs boson and to look for physics beyond the standard model. Among its primary targets for the latter is finding a new heavy neutral spin-1 particle, called a Z boson, since such a particle arises in any extension of the standard model to include an additional local phase-rotation, or U(1), symmetry.

Searches for a Z boson at hadron colliders usually look for decays of the Z into two leptons (e.g., an electron and a positron) because such Z events stand out from the flood of background events. But what if the Z boson, unlike the standard model Z boson, is “leptophobic,” meaning it doesn’t couple very strongly to leptons? This would make the Z very difficult to detect. In a paper published in Physical Review Letters, Vernon Barger at the University of Wisconsin, Paul Langacker at Princeton, and Hye-Sung Lee at the University of California, Riverside, all in the US, propose an interesting new model-independent way to study such leptophobic Z bosons at the LHC. They show that the Z can decay, via a Higgs boson, into three Z bosons, each of which can then decay into two leptons. So a Z boson that does not decay into two leptons could paradoxically be found by this indirect decay into six leptons.

There will undoubtedly be surprises at the LHC, and this striking channel could be the discovery mode for new physics, if it takes the form of a leptophobic Z boson. – Robert Garisto


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles