Synopsis

The gold trail that leads to the quark gluon plasma

Physics 3, s11
A microscopic picture could explain puzzling data from RHIC.
Illustration: Courtesy of the STAR detector at RHIC

The quark gluon plasma (QGP) produced by gold nuclei collisions at the Relativistic Heavy Ion Collider (RHIC) has already unveiled a wealth of phenomena pertaining to this new, extreme state of matter. Understanding the QGP remains at the forefront of research efforts at particle accelerators across the world.

One of the many puzzling features observed in collisions of gold nuclei is the angular (azimuthal) correlations in the distribution of hadrons that emerge from the nuclear collisions. The spatial distribution of the hadrons should encode valuable information about the details of the dynamical processes at work in the QGP. However, this distribution appears to have an asymmetry that goes against intuition and has therefore inspired theorists to explore several hydrodynamical and phenomenological models as a means to explain it.

Writing in Physical Review Letters, Alejandro Ayala and colleagues at Universidad Nacional Autónoma de México, in collaboration with scientists also in Mexico, Brazil, and the US provide an explanation for this tell-tale asymmetry in terms of an enhancement in the production of three-body final states in two-particle collisions in the QGP. This quantum field theoretic computation is carried out within the framework of quantum chromodynamics. Apart from providing an elegant microscopic description of the azimuthal distribution, this work is also an inspiring example of the direct and fruitful exchange between theory and experiment in high-energy physics. – Abhishek Agarwal


Subject Areas

Particles and Fields

Related Articles

Viewing a Quantum Spin Liquid through QED
Condensed Matter Physics

Viewing a Quantum Spin Liquid through QED

A numerical investigation has revealed a surprising correspondence between a lattice spin model and a quantum field theory. Read More »

Seven Astrophysical Tau Neutrinos Unmasked
Particles and Fields

Seven Astrophysical Tau Neutrinos Unmasked

Scientists have found seven astrophysical tau neutrinos—particles that are notoriously difficult to detect—in an analysis of data from the IceCube Neutrino Observatory in Antarctica. Read More »

Evidence of a New Subatomic Particle
Particles and Fields

Evidence of a New Subatomic Particle

A signal from the decay products of a meson—a quark and an antiquark—comes from two subatomic particles and not one, as previously thought. Read More »

More Articles