Synopsis: Loop, de-loop

Relatively small tension in a DNA strand can have large effects on its ability to control the expression of genes.

When conditions require it, a biological cell can prevent its machinery from reading a section of DNA by creating a loop—like the first loop you make when coiling a rope—just “upstream” from the gene to be suppressed. A repressor protein ties together two points on the DNA to make the loop. Researchers know a lot about the biochemistry of this kind of gene regulation but little about the physics.

Yih-Fan Chen, Joshua N. Milstein, and Jens-Christian Meiners, from the University of Michigan in Ann Arbor, US, have now shown experimentally that a miniscule amount of mechanical tension in the DNA strand can strongly affect the creation of the loop. They find that increasing the tension on the strand from 60 to 183 femtonewtons reduces the likelihood that a loop will form by a factor of ten, but once created, the loop is highly stable over the range of forces they tested.

The team used optical tweezers to tug on an 800-nanometer microsphere attached to one end of the DNA strand while the other end of the strand was stuck to the bottom of the water-filled chamber. The loop-binding protein LacI was in the solution, and the sphere height dropped whenever a DNA loop was created, shortening the free length of the strand.

Given the large effects of subpiconewton tensions, the authors suggest that cells may actively control DNA tension in order to protect the gene regulation process from even larger forces within the cell. Cells might even use tension to help regulate gene expression, they suggest, but there aren’t yet tools to measure such effects in living cells. – David Ehrenstein


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Materials Science

In the strangest of places

Read More »

Next Synopsis

Mesoscopics

Mind the graphene gap

Read More »

Related Articles

Synopsis: Teaching Fish How to Swim
Fluid Dynamics

Synopsis: Teaching Fish How to Swim

A new model of swimming fish and cetaceans pinpoints the parameters that matter most for efficient motion. Read More »

Focus: Bacteria Form Waveguides
Biological Physics

Focus: Bacteria Form Waveguides

A laser beam sent through a suspension of marine bacteria pulls the organisms into the beam, which focuses the light. Read More »

Synopsis: Friction Means Life or Death for Ants
Soft Matter

Synopsis: Friction Means Life or Death for Ants

Experiments show that the mass of an object determines whether it slides down a sandy slope, which may explain why insect predators called antlions can trap ants in sand pits. Read More »

More Articles