Synopsis: Quiet cascade

In groundbreaking low-noise laser experiments, the linewidth limit of quantum cascade lasers is confirmed to be much lower than predicted by standard laser models.
Synopsis figure
Illustration: S. Bartalini et al., Phys. Rev. Lett. (2010)

Quantum cascade lasers are semiconductor lasers that emit in the infrared range. Unlike typical semiconductor lasers, where lasing is a result of recombination of electron-hole pairs across the band gap, quantum cascade lasers operate through intersubband transitions in a stack of quantum wells.

Until recently, it was thought that the fundamental frequency noise of all semiconductor lasers, including quantum cascade lasers, could be described through the Schawlow-Townes formula. This formula contains a systematic prefactor, the Henry linewidth enhancement factor, which accounts for refractive index variations from electron density fluctuations. While this formula describes line broadening in semiconductor lasers well, theory has predicted and experiments have shown that the Henry linewidth factor for quantum cascade lasers is nearly negligible. Hitherto the predicted noise level limits for quantum cascade lasers have been outside of our experimental reach. Recently, though, the search for the correct interpretation of the Schawlow-Townes formula for quantum cascade lasers has been invigorated by theoretical predictions that the fundamental linewidth is much lower than that of interband semiconductor lasers.

In results published in Physical Review Letters, Saverio Bartalini and co-workers at the Istituto Nazionale di Ottica (INO-CNR/LENS) in Florence and at the Second University of Naples, both in Italy, have shown that the linewidth limit for quantum cascade lasers is far below the limit set by the Schawlow-Townes formula when taking into account the spontaneous emission only. Through intricate experiments that required the building of a laser driver with unprecedentedly low noise levels, they showed that the Henry linewidth enhancement factor is negligible. In addition, they found that the linewidth depends on an effective coupling of the spontaneous emission with the lasing mode, and is reduced by the presence of nonradiative relaxation processes. – Daniel Ucko


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Quantum Information

A smoother quantum measurement

Read More »

Next Synopsis

Particles and Fields

Loopy precision

Read More »

Related Articles

Focus: <i>Image</i>—Cooperating Lasers Make Topological Defects
Nonlinear Dynamics

Focus: Image—Cooperating Lasers Make Topological Defects

A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems. Read More »

Viewpoint: Inducing Transparency with a Magnetic Field
Optics

Viewpoint: Inducing Transparency with a Magnetic Field

A magnetic field applied to an atomic sample in an optical cavity generates optical transparency that could be used to enhance the frequency stability of lasers. Read More »

Focus: <i>Image</i>—Honeycomb Diffraction
Photonics

Focus: Image—Honeycomb Diffraction

Predictions of diffraction patterns for honeycomb photonic crystals were part of a comprehensive study of these structures that may be useful in nanoscale photonic devices. Read More »

More Articles