Synopsis: Hubbard model for ultracold atoms

A well-known model in condensed matter physics has now been applied to ultracold atoms in an optical lattice.
Synopsis figure
Illustration: NIST

Ultracold atoms stored in optical lattices are a highly controllable way to study systems of strongly correlated particles, offering the possibility of better understanding key phenomena in condensed matter physics. On the condensed matter side, a key tool in every researcher’s kit is the Hubbard model, which was developed in the 1960s to investigate the insulating and conducting states of electrons in solids. This model consists of particles on a lattice, in which the Hamiltonian combines an on-site energy and a “hopping” term to account for tunneling from site to site. Now, in a paper in Physical Review Letters, Hans Peter Büchler of the University of Stuttgart, Germany, reports an analysis of the Hubbard model for two ultracold atoms moving through an optical lattice trap.

In Büchler’s work, the two particles interact through a Feshbach resonance that allows the interaction to be tuned all the way from attraction to strong repulsion. For atoms in a three-dimensional lattice, the author is able to exactly calculate the bound-state energies and band structure and compare with predictions of the Hubbard model. As the interaction strength increases, however, the Hubbard picture deviates more and more from the exact solution, a finding that will be important as experimental efforts seek to observe ordered magnetic and superconducting phases in the strongly interacting regime. – David Voss


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsOptics

Previous Synopsis

Next Synopsis

Related Articles

Focus: New View of Cold Atoms Flowing
Atomic and Molecular Physics

Focus: New View of Cold Atoms Flowing

A new technique produces an image of the flow of cold atoms through a channel, a potentially important tool for future cold-atom technology. Read More »

Viewpoint: Seeing Scrambled Spins
Atomic and Molecular Physics

Viewpoint: Seeing Scrambled Spins

Two experimental groups have taken a step towards observing the “scrambling” of information that occurs as a many-body quantum system thermalizes.   Read More »

Focus: <i>Image</i>—Cooperating Lasers Make Topological Defects
Nonlinear Dynamics

Focus: Image—Cooperating Lasers Make Topological Defects

A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems. Read More »

More Articles