Synopsis: Turning backaction around

Signal amplification in an optical interferometer may push the sensitivity of measurements beyond the standard quantum limit.
Synopsis figure
Illustration: Courtesy of A. Heidmann, Laboratoire Kastler Brossel

Optical techniques that have been developed to measure small displacements are important for gravitational wave astronomy, the detection of currents in superconductors, and the study of quantum effects in mechanical systems. Optical interferometry is unsurpassed in its ability to detect small displacements, but runs into a sensitivity limit known as the standard quantum limit, which results from quantum fluctuations in the light probe itself disturbing the object being measured.

In a paper appearing in Physical Review Letters, Pierre Verlot and colleagues at Laboratoire Kastler Brossel in Paris demonstrate that radiation pressure induced “backaction” fluctuations of the mirror position in an optical interferometer can amplify a signal imprinted on the interferometer light. An amplification factor greater than six was observed by tuning the signal modulation frequency close to the frequency of a cavity mechanical resonance. Although the sensitivity of the current experiment was limited by thermal noise, the amplification technique has the potential to surpass the standard-quantum limit, which would open up new frontiers in precision optical interferometry. – Mark Saffman


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Fluid Dynamics

Drying out in 3D

Read More »

Next Synopsis

Related Articles

Viewpoint: Quantum Computer Simulates Excited States of Molecule
Physical Chemistry

Viewpoint: Quantum Computer Simulates Excited States of Molecule

Excited-state energies of the hydrogen molecule have been calculated using a two-qubit quantum computer. Read More »

Focus: A Tiny Engine Powered by Light and Liquid Physics
Statistical Physics

Focus: A Tiny Engine Powered by Light and Liquid Physics

A micrometer-sized sphere trapped by optical tweezers in a liquid, under the right conditions, orbits rapidly around the laser beam—creating a potential micromixing device. Read More »

Viewpoint: Intense Laser Sheds Light on Radiation Reaction
Plasma Physics

Viewpoint: Intense Laser Sheds Light on Radiation Reaction

Experimentalists have used ultraintense laser light to explore a fundamental problem in quantum electrodynamics: the response of an accelerated electron to the radiation it emits. Read More »

More Articles