Synopsis: Turning backaction around

Signal amplification in an optical interferometer may push the sensitivity of measurements beyond the standard quantum limit.
Synopsis figure
Illustration: Courtesy of A. Heidmann, Laboratoire Kastler Brossel

Optical techniques that have been developed to measure small displacements are important for gravitational wave astronomy, the detection of currents in superconductors, and the study of quantum effects in mechanical systems. Optical interferometry is unsurpassed in its ability to detect small displacements, but runs into a sensitivity limit known as the standard quantum limit, which results from quantum fluctuations in the light probe itself disturbing the object being measured.

In a paper appearing in Physical Review Letters, Pierre Verlot and colleagues at Laboratoire Kastler Brossel in Paris demonstrate that radiation pressure induced “backaction” fluctuations of the mirror position in an optical interferometer can amplify a signal imprinted on the interferometer light. An amplification factor greater than six was observed by tuning the signal modulation frequency close to the frequency of a cavity mechanical resonance. Although the sensitivity of the current experiment was limited by thermal noise, the amplification technique has the potential to surpass the standard-quantum limit, which would open up new frontiers in precision optical interferometry. – Mark Saffman


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Fluid Dynamics

Drying out in 3D

Read More »

Next Synopsis

Related Articles

Viewpoint: A New Angle on Mapping the Refractive Index
Optics

Viewpoint: A New Angle on Mapping the Refractive Index

3D maps of a sample’s refractive index—used in some biomedical tests—can be directly derived from angle-dependent measurements of light scattering from the sample. Read More »

Focus: <i>Video</i>—Juggling Droplets
Optics

Focus: Video—Juggling Droplets

A pair of microscopic liquid droplets suspended by a laser beam can execute a surprisingly stable “juggling” pattern for up to 30 minutes. Read More »

Focus: How to Study a Speck of Dust
Optics

Focus: How to Study a Speck of Dust

A new technique allows the capture and study of a single dust particle just 34 nanometers wide, nearly 10 times smaller than the previous limit. Read More »

More Articles