Synopsis: Modeling sans electrons

Automatically generated potentials allow one to overlook electrons while accurately modeling the potential energy surface of atoms.
Synopsis figure

As computers get faster, researchers are on the lookout for more reliable and practicable methods to model materials on the atomic scale. The increasing range of such computational techniques—broadly divided into a class that treats electrons explicitly and another that does not⎯permit a better trade-off between computational resources and accuracy in results.

Analytic interatomic potentials are difficult to calculate accurately; those that work for bulk phases may not accurately predict observable properties, which often depend on what happens at the surface. Writing in Physical Review Letters, Albert Bartók, Mike Payne, and Gábor Csányi from the University of Cambridge, UK, and Risi Kondor from the California Institute of Technology, US, introduce a technique to model the potential energy surface of a set of atoms that allows them to work around having to simulate electrons explicitly; in effect, they autogenerate interatomic potentials from existing calculations of atomic forces and energies. Though independent of the specifics of the functional form, these potentials appear to be remarkably accurate in reproducing complex energy landscapes. The hope is that this admittedly generalized approach will work well in modeling specific metals and semiconductors. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Nuclear Physics

Results from HELIOS

Read More »

Next Synopsis

Magnetism

Pressed to order

Read More »

Related Articles

Synopsis: A Crystal Ball for 2D Materials
Materials Science

Synopsis: A Crystal Ball for 2D Materials

Researchers predict new two-dimensional materials whose structures differ from their three-dimensional counterparts. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

Focus: Ultrafast Switch with Organic Crystal
Condensed Matter Physics

Focus: Ultrafast Switch with Organic Crystal

An organic crystal was switched between paraelectric and ferroelectric states in a picosecond. Similar materials could eventually serve as extremely fast digital switches. Read More »

More Articles