Synopsis: Modeling sans electrons

Automatically generated potentials allow one to overlook electrons while accurately modeling the potential energy surface of atoms.
Synopsis figure

As computers get faster, researchers are on the lookout for more reliable and practicable methods to model materials on the atomic scale. The increasing range of such computational techniques—broadly divided into a class that treats electrons explicitly and another that does not⎯permit a better trade-off between computational resources and accuracy in results.

Analytic interatomic potentials are difficult to calculate accurately; those that work for bulk phases may not accurately predict observable properties, which often depend on what happens at the surface. Writing in Physical Review Letters, Albert Bartók, Mike Payne, and Gábor Csányi from the University of Cambridge, UK, and Risi Kondor from the California Institute of Technology, US, introduce a technique to model the potential energy surface of a set of atoms that allows them to work around having to simulate electrons explicitly; in effect, they autogenerate interatomic potentials from existing calculations of atomic forces and energies. Though independent of the specifics of the functional form, these potentials appear to be remarkably accurate in reproducing complex energy landscapes. The hope is that this admittedly generalized approach will work well in modeling specific metals and semiconductors. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

Materials Science

Previous Synopsis

Nuclear Physics

Results from HELIOS

Read More »

Next Synopsis

Magnetism

Pressed to order

Read More »

Related Articles

Synopsis: Tackling Electronic Correlations
Condensed Matter Physics

Synopsis: Tackling Electronic Correlations

A new “first principles” simulation method could broaden the range of strongly correlated materials whose properties can be theoretically predicted. Read More »

Viewpoint: Hydrogen Hides Surprises at High Pressure
Condensed Matter Physics

Viewpoint: Hydrogen Hides Surprises at High Pressure

Measurements of the melting curve of hydrogen at unprecedentedly high pressures call for a refinement of the theories describing the material. Read More »

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains
Materials Science

Viewpoint: Porous Materials Exhibit Granular-Like Stress Chains

Simulations of porous materials exhibit internal stress patterns like those in granular materials, despite the fact that these two systems are practically “negative images” of each other. Read More »

More Articles