Synopsis: Doping graphene into superconductivity

Highly doped graphene can become superconducting.
Synopsis figure
Illustration: McChesney et al., Phys. Rev. Lett. (2010)

Graphene’s singular transport characteristics derive from its band structure, whose features include saddle points at the edges of the Brillouin zone that affect the topology of the Fermi surface.

In their article in Physical Review Letters, Jessica McChesney and her collaborators from the US, Germany, and Spain check for superconductivity in graphene because of a similarity—also caused by a saddle point in the band structure (a van Hove singularity)—with the density of states of high-temperature superconductors.

They chemically dope graphene to significantly higher levels than previously achieved and then probe its band structure with angle-resolved photoemission spectroscopy. The saddle point becomes more extended than localized as the Fermi surface moves across it. The authors calculate that, under these conditions of doping and Fermi surface topology, graphene can achieve superconductivity, in principle due to electron-electron interactions alone. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

SuperconductivityMesoscopicsGraphene

Previous Synopsis

Quantum Information

Turning backaction around

Read More »

Next Synopsis

Nuclear Physics

Results from HELIOS

Read More »

Related Articles

Synopsis: An Airless Test for 2D Superconductors
Superconductivity

Synopsis: An Airless Test for 2D Superconductors

Researchers repurpose a scanning tunneling microscope to measure the Meissner effect in 2D films kept under vacuum, allowing for confirmation of superconductivity. Read More »

Viewpoint: A Polka-Dot Pattern Emerges in Superfluid Helium
Superconductivity

Viewpoint: A Polka-Dot Pattern Emerges in Superfluid Helium

A surprising two-dimensional pattern appears in superfluid helium-3 when the liquid is confined to a micrometer-thick cell and exposed to a magnetic field. Read More »

Synopsis: Putting a Spin on the Josephson Effect
Superconductivity

Synopsis: Putting a Spin on the Josephson Effect

Researchers demonstrate spin splitting of localized electronic states, called Andreev bound states, in a superconducting device. Read More »

More Articles