Synopsis: Doping graphene into superconductivity

Highly doped graphene can become superconducting.
Synopsis figure
Illustration: McChesney et al., Phys. Rev. Lett. (2010)

Graphene’s singular transport characteristics derive from its band structure, whose features include saddle points at the edges of the Brillouin zone that affect the topology of the Fermi surface.

In their article in Physical Review Letters, Jessica McChesney and her collaborators from the US, Germany, and Spain check for superconductivity in graphene because of a similarity—also caused by a saddle point in the band structure (a van Hove singularity)—with the density of states of high-temperature superconductors.

They chemically dope graphene to significantly higher levels than previously achieved and then probe its band structure with angle-resolved photoemission spectroscopy. The saddle point becomes more extended than localized as the Fermi surface moves across it. The authors calculate that, under these conditions of doping and Fermi surface topology, graphene can achieve superconductivity, in principle due to electron-electron interactions alone. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

SuperconductivityMesoscopicsGraphene

Previous Synopsis

Quantum Information

Turning backaction around

Read More »

Next Synopsis

Nuclear Physics

Results from HELIOS

Read More »

Related Articles

Synopsis: How Defects Alter Graphene Nanoribbons
Graphene

Synopsis: How Defects Alter Graphene Nanoribbons

Molecular defects can improve the mechanical flexibility of graphene nanoribbons without affecting their electrical properties, new experiments show. Read More »

Synopsis: How Defects Keep Graphene Cool
Graphene

Synopsis: How Defects Keep Graphene Cool

Defects in graphene lead to a localized cooling effect that could be used to control heat dissipation in nanodevices. Read More »

Synopsis: Stretching Graphene Localizes its Electrons
Graphene

Synopsis: Stretching Graphene Localizes its Electrons

The electrical properties of a graphene bilayer can be tuned by stretching and rotating one of the bilayer’s sheets. Read More »

More Articles