Synopsis: Doping graphene into superconductivity

Highly doped graphene can become superconducting.
Synopsis figure
Illustration: McChesney et al., Phys. Rev. Lett. (2010)

Graphene’s singular transport characteristics derive from its band structure, whose features include saddle points at the edges of the Brillouin zone that affect the topology of the Fermi surface.

In their article in Physical Review Letters, Jessica McChesney and her collaborators from the US, Germany, and Spain check for superconductivity in graphene because of a similarity—also caused by a saddle point in the band structure (a van Hove singularity)—with the density of states of high-temperature superconductors.

They chemically dope graphene to significantly higher levels than previously achieved and then probe its band structure with angle-resolved photoemission spectroscopy. The saddle point becomes more extended than localized as the Fermi surface moves across it. The authors calculate that, under these conditions of doping and Fermi surface topology, graphene can achieve superconductivity, in principle due to electron-electron interactions alone. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

SuperconductivityMesoscopicsGraphene

Previous Synopsis

Quantum Information

Turning backaction around

Read More »

Next Synopsis

Nuclear Physics

Results from HELIOS

Read More »

Related Articles

Viewpoint: Pushing Towards Room-Temperature Superconductivity
Condensed Matter Physics

Viewpoint: Pushing Towards Room-Temperature Superconductivity

Two independent studies report superconductivity at record high temperatures in hydrogen-rich materials under extreme pressure. Read More »

Synopsis: A Laser Steers Electrons Inside Graphene
Optoelectronics

Synopsis: A Laser Steers Electrons Inside Graphene

Orthogonally polarized laser pulses produce a controllable, variable current whose direction can be reversed in less than a femtosecond. Read More »

Synopsis: Giving Vortices a Spin
Spintronics

Synopsis: Giving Vortices a Spin

A proposed method for transporting spin from one place to another utilizes superconducting vortices as carriers of spin information. Read More »

More Articles