Synopsis: Calculations for complex nuclei

An effective field theory on a lattice is applied successfully to nuclei as large as carbon-12.
Synopsis figure
Illustration: Alan Stonebraker

Finding reliable computational tools for understanding the behavior of complex nuclei remains one of the central issues in theoretical nuclear physics. The traditional approaches to this problem are based on effective or approximate many-body theories. These approaches suffer from the lack of analytical techniques for solving for the complicated many-body interactions known to be present among nucleons. Direct numerical simulations of nuclei are a potential alternative to analytical methods. However, brute force methods for simulating nuclei are likely to fail without additional inputs from other theoretical approaches due to the enormous computational complexity of the problem.

Writing in Physical Review Letters, Evgeny Epelbaum, Hermann Krebs, Dean Lee, and Ulf Meißner, in a collaboration involving institutions in Germany and the US, combine analytical and numerical approaches to compute the binding energies of nuclei as large as carbon-12. Epelbaum et al. use an analytic scheme for formulating the effective many-body dynamics that systematically accounts for nuclear interactions of increasing complexity up to next-to-next-to-leading order and also incorporates isospin breaking and Coulomb effects. Furthermore, they are able to simulate the effective dynamical models numerically to predict various measurable quantities for complex nuclei. The computational scaling of this method suggests applications to even larger nuclei in the future. – Abhishek Agarwal


Features

More Features »

Subject Areas

Particles and FieldsNuclear Physics

Previous Synopsis

Next Synopsis

Semiconductor Physics

Noisy spins

Read More »

Related Articles

Synopsis: OPERA’s Final Stamp on Neutrino Oscillations
Particles and Fields

Synopsis: OPERA’s Final Stamp on Neutrino Oscillations

The final analysis of data collected by the OPERA experiment improves the precision of measurements of neutrinos oscillating between muon and tau flavors. Read More »

Synopsis: A Missing Piece in the Neutrinoless Beta-Decay Puzzle
Particles and Fields

Synopsis: A Missing Piece in the Neutrinoless Beta-Decay Puzzle

The inclusion of short-range interactions in models of neutrinoless double-beta decay could impact the interpretation of experimental searches for the elusive decay. Read More »

Synopsis: Neutron Decay May Hint at Dark Matter
Cosmology

Synopsis: Neutron Decay May Hint at Dark Matter

The occasional decay of neutrons into dark matter particles could solve a long-standing discrepancy in neutron decay experiments. Read More »

More Articles