Synopsis

Spin-polarized positronium

Physics 3, s61
An important hurdle to achieve a positronium Bose condensate is overcome with the production of a population of fully polarized positronium atoms
Illustration: Allen Mills

Positronium ( Ps) is a short-lived “atom” that consists of an electron bound to its antiparticle, the positron. Positron beams derived from radioactive sources are always spin-polarized to some extent, and have been used for a variety of applications, for instance measuring the magnetic properties of ferromagnets, and studying fundamental interactions. It has been known for some years now that fully spin-polarized positronium beam, if produced at high enough densities, is also, due to its low mass, a very good candidate for observing Bose condensation in a positronium system, with well-defined interactions between the constituents and a reasonably high condensation temperature. A positronium Bose condensate is a necessary precursor for observing stimulated annihilation and the (as yet) unrealized gamma-ray laser.

Writing in Physical Review Letters, David Cassidy, Vincent Meligne, and Allen Mills, Jr., from the University of California, Riverside, US, have demonstrated a way to destroy the minority spin atoms in a high-density collection of positronium atoms, leaving a fully spin-polarized Ps gas. In this experiment, Ps atoms interact with each other in porous silica films in a magnetic field and diffuse between the interconnected voids, resulting in a selective quenching of the minority states. In addition, Cassidy et al. show that the initial positron polarization is preserved in an intermediate accumulation process that uses a buffer gas trap. The present method produces a Ps density that is still two orders of magnitude lower than that needed to achieve Bose-Einstein condensation, but it overcomes an important hurdle. – Sarma Kancharla


Subject Areas

Atomic and Molecular Physics

Related Articles

Seeing Collisions in Cold Molecular Clouds
Atomic and Molecular Physics

Seeing Collisions in Cold Molecular Clouds

Dense ensembles of laser-cooled molecules allow the observation of molecular collisions—a result that could lead to applications of cold molecular gases in quantum simulation and fundamental physics tests. Read More »

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses
Condensed Matter Physics

Probing Liquid Water’s Structure with Attosecond X-Ray Pulses

Using an ultrafast technique, researchers shed light on how the hydrogen-bonded structure of water is reflected in its x-ray spectrum. Read More »

Precise Measurement of Hydrogen’s Energy Levels
Atomic and Molecular Physics

Precise Measurement of Hydrogen’s Energy Levels

Researchers have measured the transition energy of several highly excited states, which could help resolve a discrepancy about the size of the proton. Read More »

More Articles