Synopsis

Striking the right tone

Physics 3, s103
A better understanding of human pitch perception has been achieved with an electronic analog of the cochlea.

Despite efforts by some of the most famous names in physics such as Ohm and von Helmholtz, human perception of acoustic pitch remains an unsolved puzzle. The problem is especially complex because a well-characterizable physical stimulus (sound) is detected by a heretofore poorly understood psychophysiological signal receiver (the ear). The cochlea is the ear’s signal transducer, and many models of it seem to work but then fail empirically, for example, in the case of the missing fundamental: even if the lowest frequency is removed from a sound, humans still perceive the pitch as the lowest frequency from the higher harmonics.

In Physical Review Letters, Stefan Martignoli and Ruedi Stoop of the University of Zurich and the Swiss Federal Institute of Technology, Zurich, Switzerland, report their use of an electronic cochlea to study the problem of perceived pitch. Cochlear models are often tested by applying different shifts to the pitch of the stimulus and then comparing the response with actual psychoacoustic measurements. Martignoli and Stoop follow the details of such signals through their circuit and detect the changes at each step along the path. They find that the pitch-shifting response that humans perceive can be explained as the result of local nonlinearities in the cochlea itself, rather than effects of higher-level neural processing in the brain. – David Voss


Subject Areas

Biological Physics

Related Articles

Uncovering Networks in Rainforest Plants
Biological Physics

Uncovering Networks in Rainforest Plants

The spatial arrangement of plants in a rainforest corresponds to a special “critical” state that could be vital for ecosystem robustness.   Read More »

Shape Matters in Self-Assembly
Nanophysics

Shape Matters in Self-Assembly

A theoretical study of self-assembly finds that hexagon-shaped building blocks can form large structures faster than triangular or square blocks. Read More »

The Neuron vs the Synapse: Which One Is in the Driving Seat?
Complex Systems

The Neuron vs the Synapse: Which One Is in the Driving Seat?

A new theoretical framework for plastic neural networks predicts dynamical regimes where synapses rather than neurons primarily drive the network’s behavior, leading to an alternative candidate mechanism for working memory in the brain. Read More »

More Articles