Synopsis: One relation to rule them all

Data continue to accumulate showing that an important set of universal relations accurately describes the properties of ultracold fermionic gases.
Synopsis figure
Illustration: Alan Stonebraker

Quantum gases of ultracold fermions offer a versatile way to study phenomena from quark matter to superconductors. In 2008, Shina Tan (then at the University of Washington) published a set of exact universal relations connecting microscopic quantities with thermodynamic variables under a wide range of conditions. Recently, a group at JILA experimentally verified some of the Tan relations in ultracold potassium-40 [1]. Writing in Physical Review Letters, Eva Kuhnle and colleagues at Swinburne University of Technology in Melbourne, Australia, now add to the picture with their results on lithium-6.

Kuhnle et al. used Bragg scattering of atoms from a periodic optical potential to verify one of the Tan relations for pair correlations as a function of both the scattering length and probe momentum. This complements the JILA work, which verified a relation between total energy and adiabatic changes in scattering length, and another relation that extends the virial theorem (which expresses total energy in terms of kinetic energy, external potential energy, and interaction energy) to quantum gases. – David Voss

[1] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett. 104, 235301 (2010); see also Viewpoint commentary by D. Sheehy, Physics 3, 48 (2010).


More Features »


More Announcements »

Subject Areas

Atomic and Molecular Physics

Next Synopsis

Nuclear Physics

Order out of chaos

Read More »

Related Articles

Synopsis: Direct View of Exchange Symmetry
Quantum Physics

Synopsis: Direct View of Exchange Symmetry

A proposed set of experiments could offer a direct measurement of the fundamental quantum property that distinguishes fermions from bosons. Read More »

Synopsis: Topological Defect on the Move
Condensed Matter Physics

Synopsis: Topological Defect on the Move

Researchers have directed the motion of a domain-wall-like topological defect through a crystal of trapped ions. Read More »

Viewpoint: Trapped Ions Test Fundamental Particle Physics
Atomic and Molecular Physics

Viewpoint: Trapped Ions Test Fundamental Particle Physics

New precision experiments using trapped molecular ions provide an alternative method for determining if the electron has an electric dipole moment. Read More »

More Articles