Synopsis: Cosmic question

Where do cosmic magnetic fields come from?
Synopsis figure
Credit: R. Kennicutt (Steward Observatory, Univ. of Arizona)/NASA

The origin of the magnetic fields observed in galaxies and galaxy clusters is one of the outstanding problems in cosmology. Although the amplification of weak “seed” magnetic fields, via the turbulent dynamo mechanism in conducting fluids or plasmas [1], is quite well understood, how the seed itself forms has remained a serious challenge. In ideal fluid dynamics, a topological constraint prohibits the emergence of a magnetic field, or, more generally, a vorticity, from a zero-field state. This leaves the question: How can an initially magnetic-field-less cosmological fluid give rise to a nonzero seed field?

Various scale-specific solutions to this problem have been proposed, usually employing non-ideal fluid dynamics. In an article appearing in Physical Review Letters, Swadesh Mahajan of the University of Texas, US, and Zensho Yoshida of the University of Tokyo, Japan, demonstrate a universal vorticity-generating mechanism using ideal, but relativistic, fluid dynamics. They show that special relativity breaks the topological constraint against the emergence of vorticity, even for mildly relativistic fluid flows. Their finding could lead to a better understanding of the origin of magnetic fields in the Universe. – Jerome Malenfant

[1] L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002).


Features

More Features »

Announcements

More Announcements »

Subject Areas

CosmologyFluid DynamicsPlasma Physics

Previous Synopsis

Materials Science

Cracking the case on fracture

Read More »

Next Synopsis

Particles and Fields

Uncertain sources

Read More »

Related Articles

Synopsis: Neutrons On-Demand from Laser Fusion
Nuclear Physics

Synopsis: Neutrons On-Demand from Laser Fusion

A new laser-driven fusion method could lead to a robust and efficient way to generate neutrons for use in materials science, geology, and other fields. Read More »

Focus: Why Sediments Are So Uniform
Fluid Dynamics

Focus: Why Sediments Are So Uniform

A new theory suggests that sedimenting particles of irregular shape will drift horizontally as they fall, a result that may resolve a long-standing puzzle. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

More Articles