Synopsis: Cosmic question

Where do cosmic magnetic fields come from?
Synopsis figure
Credit: R. Kennicutt (Steward Observatory, Univ. of Arizona)/NASA

The origin of the magnetic fields observed in galaxies and galaxy clusters is one of the outstanding problems in cosmology. Although the amplification of weak “seed” magnetic fields, via the turbulent dynamo mechanism in conducting fluids or plasmas [1], is quite well understood, how the seed itself forms has remained a serious challenge. In ideal fluid dynamics, a topological constraint prohibits the emergence of a magnetic field, or, more generally, a vorticity, from a zero-field state. This leaves the question: How can an initially magnetic-field-less cosmological fluid give rise to a nonzero seed field?

Various scale-specific solutions to this problem have been proposed, usually employing non-ideal fluid dynamics. In an article appearing in Physical Review Letters, Swadesh Mahajan of the University of Texas, US, and Zensho Yoshida of the University of Tokyo, Japan, demonstrate a universal vorticity-generating mechanism using ideal, but relativistic, fluid dynamics. They show that special relativity breaks the topological constraint against the emergence of vorticity, even for mildly relativistic fluid flows. Their finding could lead to a better understanding of the origin of magnetic fields in the Universe. – Jerome Malenfant

[1] L. M. Widrow, Rev. Mod. Phys. 74, 775 (2002).


Features

More Features »

Announcements

More Announcements »

Subject Areas

CosmologyFluid DynamicsPlasma Physics

Previous Synopsis

Materials Science

Cracking the case on fracture

Read More »

Next Synopsis

Particles and Fields

Uncertain sources

Read More »

Related Articles

Synopsis: Antispiral Formation at a Liquid Surface
Fluid Dynamics

Synopsis: Antispiral Formation at a Liquid Surface

Liquid falling from a horizontal film displays an intriguing pattern of inwardly rotating spirals. Read More »

Synopsis: Universe Preceded by an Antiuniverse?
Cosmology

Synopsis: Universe Preceded by an Antiuniverse?

A new cosmology model suggests that our Universe has a mirror image in the form of an “antiuniverse” that existed before the big bang. Read More »

Synopsis: Turning Round Drops Square
Soft Matter

Synopsis: Turning Round Drops Square

Researchers can change the shape of a liquid drop by placing it between two stretched elastic films, allowing the drop to be used as a tiny adjustable lens. Read More »

More Articles