Synopsis: No more orders, please!

An optical fiber facilitates the transfer of energy from one laser beam to another in a nonlinear process that suppresses higher-order scattering.
Synopsis figure
Credit: M. S. Kang, Phys. Rev. Lett. (2010)

Confining light to tiny regions in space enhances its interaction with matter, leading to a host of phenomena, from surface-enhanced Raman scattering on metal surfaces to nonlinear effects in optical fibers.

Writing in Physical Review Letters, Myeong Soo Kang, Andre Brenn, and Philip Russell from the Max-Planck-Institute for the Science of Light in Erlangen, Germany, demonstrate how to harness the effects of confinement to generate a nonlinear optoacoustic effect in nanostructured photonic crystal fibers. They launch two orthogonally polarized laser beams through a birefringent fiber, in a setup that allows them to tune the frequency difference between the two beams. When this frequency offset is at a resonance, the laser pair excites a tightly confined acoustic mode in the fiber core, causing the fiber to vibrate. The acoustic mode borrows its energy from the higher frequency beam, which acts as a pump signal, and eventually transfers it to the lower frequency (Stokes) beam. This transfer of energy is similar to what happens in Raman scattering, but is designed so that no higher or lower frequency modes are excited as the optical power is increased. The result is a highly selective power transfer from the pump to the Stokes signal that occurs at a unique frequency and can be 97% efficient, in some cases.

This effect, which the authors call forward stimulated interpolarization scattering, or SIPS, may find applications in optical amplifiers, signal processing, and optical sensing. – Manolis Antonoyiannakis


Features

More Features »

Announcements

More Announcements »

Subject Areas

Optics

Previous Synopsis

Strongly Correlated Materials

A more perfect Dirac cone

Read More »

Next Synopsis

Astrophysics

Cosmic backtracking

Read More »

Related Articles

Viewpoint: Photonic Hat Trick
Optics

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

Synopsis: A Neat Way to Slow Down Light
Optics

Synopsis: A Neat Way to Slow Down Light

A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage. Read More »

Focus: Reversing Light Scattering with a Handful of Photons
Optics

Focus: Reversing Light Scattering with a Handful of Photons

When a beam of light is sent through a nearly opaque material, the scattered light that emerges can be unscrambled even with relatively few photons detected. Read More »

More Articles