Synopsis: Popularity contest

Statistical physics chimes in on how popularity changes in the virtual world of the Web.

A website’s popularity proceeds like a snowball: The more people click on it, the more likely it is to rise to the top of a search, sending an ever higher stream of hyperlinks and clicks its way.

In a paper in Physical Review Letters, Jacob Ratkiewicz and colleagues at Indiana University and the Institute for Scientific Interchange in Italy study what indicators might best track how online popularity shifts over time. They looked at two large networks: Wikipedia pages and web sites in Chile. Within each network, they tracked changes⎯or “bursts”⎯in the number of hyperlinks to each of the sites and the amount of traffic this site received over time.

Network models that only assume “the more you have, the more you’ll get” fail to capture the distribution of bursts. The reason: these models don’t take into account external influences on people’s choices, such as new interest in an actress’ website after she wins a major award. Instead, Ratkiewicz et al. propose a “rank shift model” where, at each time interval, a web page randomly receives a new rank in overall popularity that is somewhere between where it currently is and the top (most viewed) position.

The authors found that their model compared well with the dynamics of bursts in Wikipedia pages in 2003⎯a data set large enough (130,000 web pages) that they could see a realistic distribution of bursts but small enough that they could run a simulation. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Interdisciplinary Physics

Previous Synopsis

Soft Matter

Hold the ketchup

Read More »

Next Synopsis

Nuclear Physics

Wishing isomers a long life

Read More »

Related Articles

Viewpoint: Language Boundaries Driven by Surface Tension
Interdisciplinary Physics

Viewpoint: Language Boundaries Driven by Surface Tension

A new model of language evolution assumes that changes in the spatial boundaries between dialects are controlled by a surface tension effect. Read More »

Synopsis: Pinpointing Ebbs and Flows of Commuter Traffic
Interdisciplinary Physics

Synopsis: Pinpointing Ebbs and Flows of Commuter Traffic

Vulnerabilities in a city’s public transport system are identified through a network analysis that accounts for the number of passengers and vehicles at any given time. Read More »

Focus: Imaging with Your Wi-Fi Hotspot
Interdisciplinary Physics

Focus: Imaging with Your Wi-Fi Hotspot

The Wi-Fi signals that provide internet access can also produce images of the transmitter’s 3D surroundings, even through walls. Read More »

More Articles