Synopsis: Squabbling spins in silicon

Dopant impurities may adversely affect the coherence of quantum bits in even highly purified silicon wafers.
Synopsis figure
Credit: Sami Mitra

Quantum computers rely on materials with quantum bits—electron spins, for example—that persist (cohere) longer than the device’s operation times. Longer decoherence times mean lower error rates, and scientists are always on the lookout for materials with usable low-error regimes. Silicon is a prime candidate because one can reduce its concentration of nuclear spins—a source of magnetic noise that interferes with electron spins—by enriching certain isotopes.

In a paper in Physical Review Letters, Wayne Witzel from Sandia National Laboratories, US, with collaborators from Australia, Poland, and the US, adopt a computationally powerful scheme to find that we may have reached the point of diminishing returns for lowering decoherence times in isotope-enriched silicon. Their calculations indicate that the effect of spins from a background of donor electrons overwhelm those from nuclear spins, resulting in a maximal coherence time of about a second for typical donor densities.

The “bad news” nonetheless comes with new understanding of the role of spin, even if limiting, in quantum computation devices. This is a particularly useful look at regimes with low-error rates (necessary for devices, but difficult to probe in experiments) and at the diverse behavior of samples with different spatial configurations of dopants. – Sami Mitra


More Features »


More Announcements »

Subject Areas

Quantum InformationSemiconductor PhysicsSpintronics

Previous Synopsis

Next Synopsis

Strongly Correlated Materials

Uncovering hidden order

Read More »

Related Articles

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer
Condensed Matter Physics

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer

A team of experimentalists and theorists proposes a scalable protocol for quantum computation based on topological superconductors. Read More »

Synopsis: Trapping a Rydberg Ion
Quantum Information

Synopsis: Trapping a Rydberg Ion

A trapped ion excited to a hydrogen-like Rydberg state shows promise for qubit applications. Read More »

Viewpoint: A Solid Footing for a Quantum Repeater
Quantum Information

Viewpoint: A Solid Footing for a Quantum Repeater

Crystals with rare-earth ions could lead to quantum repeaters that enable secure quantum communications over long distances. Read More »

More Articles