Synopsis: Graphene’s prisoners

Controlling defects on graphene that trap migrating metal atoms may lead to superior device fabrication.
Synopsis figure
Credit: O. Cretu et al., Phys. Rev. Lett. (2010).

Like semiconductor alloys that are amenable to band-gap engineering, graphene is more customizable from a technological perspective when slightly contaminated with defects and disorder. In its pure form, graphene’s energy spectrum does not have the band gap needed to control the transport characteristics of a device. Controlled addition of defects can change the properties of graphene to allow for new applications.

Writing in Physical Review Letters, Ovidiu Cretu and co-workers at the University of Strasbourg, France, together with collaborators at the Universities of Helsinki and Aalto, both in Finland, produce defects on a graphene surface by electron irradiation and subsequent annealing. Then, using transmission electron microscopy and density-functional calculations, they show that tungsten atoms, evaporated onto the surface from a heated filament, become trapped and localized by strain fields around the defects. The tungsten atoms can be made to migrate to less pristine regions of the hexagonal graphene lattice. These migrating metal atoms may enable more controlled engineering of electronic and magnetic structure of graphene than that offered by substitutional doping. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsGrapheneMaterials Science

Previous Synopsis

Next Synopsis

Interdisciplinary Physics

The topology of trade

Read More »

Related Articles

Synopsis: A Crystal Ball for 2D Materials
Materials Science

Synopsis: A Crystal Ball for 2D Materials

Researchers predict new two-dimensional materials whose structures differ from their three-dimensional counterparts. Read More »

Viewpoint: Electron Pulses Made Faster Than Atomic Motions
Atomic and Molecular Physics

Viewpoint: Electron Pulses Made Faster Than Atomic Motions

Electron pulses have shattered the 10-femtosecond barrier at which essentially all atomic motion is frozen in materials. Read More »

Synopsis: Small Particles Untangle Polymer Chains
Soft Matter

Synopsis: Small Particles Untangle Polymer Chains

Adding nanoparticles to molten polymer disentangles its constituent molecular chains, allowing them to flow more easily. Read More »

More Articles