Synopsis: Graphene’s prisoners

Controlling defects on graphene that trap migrating metal atoms may lead to superior device fabrication.
Synopsis figure
Credit: O. Cretu et al., Phys. Rev. Lett. (2010).

Like semiconductor alloys that are amenable to band-gap engineering, graphene is more customizable from a technological perspective when slightly contaminated with defects and disorder. In its pure form, graphene’s energy spectrum does not have the band gap needed to control the transport characteristics of a device. Controlled addition of defects can change the properties of graphene to allow for new applications.

Writing in Physical Review Letters, Ovidiu Cretu and co-workers at the University of Strasbourg, France, together with collaborators at the Universities of Helsinki and Aalto, both in Finland, produce defects on a graphene surface by electron irradiation and subsequent annealing. Then, using transmission electron microscopy and density-functional calculations, they show that tungsten atoms, evaporated onto the surface from a heated filament, become trapped and localized by strain fields around the defects. The tungsten atoms can be made to migrate to less pristine regions of the hexagonal graphene lattice. These migrating metal atoms may enable more controlled engineering of electronic and magnetic structure of graphene than that offered by substitutional doping. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsGrapheneMaterials Science

Previous Synopsis

Next Synopsis

Interdisciplinary Physics

The topology of trade

Read More »

Related Articles

Focus: Two Types of Cooling Require Different Designs
Materials Science

Focus: Two Types of Cooling Require Different Designs

Keeping food cold is thermodynamically different from cooling a hot circuit element—a distinction that is accounted for in the design of a new thermoelectric cooler. Read More »

Synopsis: Unconfined Electrons Exhibit Discrete Energy Levels
Nanophysics

Synopsis: Unconfined Electrons Exhibit Discrete Energy Levels

A periodic structure deposited on copper produces an electron density pattern that could affect the chemical and physical properties of the surface. Read More »

Focus: <i>Video</i>—Tunable Origami
Mechanics

Focus: Video—Tunable Origami

A folding pattern produces a metamaterial with properties that can be tuned over a wide range. Read More »

More Articles