Synopsis: Graphene’s prisoners

Controlling defects on graphene that trap migrating metal atoms may lead to superior device fabrication.
Synopsis figure
Credit: O. Cretu et al., Phys. Rev. Lett. (2010).

Like semiconductor alloys that are amenable to band-gap engineering, graphene is more customizable from a technological perspective when slightly contaminated with defects and disorder. In its pure form, graphene’s energy spectrum does not have the band gap needed to control the transport characteristics of a device. Controlled addition of defects can change the properties of graphene to allow for new applications.

Writing in Physical Review Letters, Ovidiu Cretu and co-workers at the University of Strasbourg, France, together with collaborators at the Universities of Helsinki and Aalto, both in Finland, produce defects on a graphene surface by electron irradiation and subsequent annealing. Then, using transmission electron microscopy and density-functional calculations, they show that tungsten atoms, evaporated onto the surface from a heated filament, become trapped and localized by strain fields around the defects. The tungsten atoms can be made to migrate to less pristine regions of the hexagonal graphene lattice. These migrating metal atoms may enable more controlled engineering of electronic and magnetic structure of graphene than that offered by substitutional doping. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

NanophysicsGrapheneMaterials Science

Previous Synopsis

Next Synopsis

Interdisciplinary Physics

The topology of trade

Read More »

Related Articles

Focus: Graphene Sliding on Graphene
Mechanics

Focus: Graphene Sliding on Graphene

Creating a bulge in a graphene sheet offers the first measurement of the shear forces between graphene layers, an essential factor in many graphene-based devices. Read More »

Synopsis: Crumpled Graphene
Graphene

Synopsis: Crumpled Graphene

The crumpling of graphene sheets explains a “soft spot” in the material’s mechanical response. Read More »

Synopsis: Powering up Magnetization
Materials Science

Synopsis: Powering up Magnetization

New theoretical work identifies a dynamic form of multiferroic behavior, in which a time-varying electric polarization induces magnetization in a material. Read More »

More Articles