Synopsis: Fingerprinting magnetic monopoles

A new probe of magnetic monopoles in momentum space is proposed.
Synopsis figure
Credit: K. M. D. Hals et al., Phys. Rev. Lett. (2010)

Magnetic monopoles in real space, postulated by Dirac in 1931, have not been seen in nature. However, effective magnetic monopoles in crystal momentum space were observed in the metallic ferromagnet SrRuO3 a few years ago. Here they arise from energy-band crossings; whenever a charged particle traverses a closed curve in momentum space, its wave function acquires a geometric Berry phase from the monopole fields. The fingerprint of these monopoles is an unconventional behavior in the so-called anomalous Hall effect: the transverse resistivity can show a nonmonotonic temperature dependence and even a sign change.

Writing in Physical Review Letters, Kjetil Hals, Anh Kiet Nguyen, and Arne Brataas from the Norwegian University of Science and Technology, and Xavier Waintal from CEA, Grenoble, France, show that it is possible to manipulate momentum-space magnetic monopoles in ferromagnets with strong spin-orbit coupling by external magnetic fields, and observe this in universal conductance fluctuations (UCF). In general, UCF refers to time-independent fluctuations in the conductance of metals at low temperature that vary between samples but are reproducible for a given sample at a fixed temperature. Hals et al. show that fast conductance oscillations recently observed in experiments on the ferromagnetic semiconductor (Ga,Mn)As are a consequence of the relocation of momentum-space magnetic monopoles. This relocation comes about due to a rotation of the magnetization and leads to a geometric phase change of closed momentum-space curves. This work offers an entirely new probe of magnetic monopoles in momentum space. – Sarma Kancharla


Features

More Features »

Announcements

More Announcements »

Subject Areas

MagnetismSpintronics

Previous Synopsis

Next Synopsis

Materials Science

Finding strength in small places

Read More »

Related Articles

Synopsis: Putting the Squeeze on Magnetic Resonance
Magnetism

Synopsis: Putting the Squeeze on Magnetic Resonance

Electron-spin-resonance measurements can achieve greater sensitivity using squeezed light as an input. Read More »

Synopsis: Two-Pulse X  Rays Probe Skyrmions
Nanophysics

Synopsis: Two-Pulse X Rays Probe Skyrmions

A new x-ray spectroscopy technique can measure magnetic fluctuations in vortex-like structures called Skyrmions with nanosecond resolution. Read More »

Synopsis: Organically Made Quantum Spin Liquids
Magnetism

Synopsis: Organically Made Quantum Spin Liquids

Versatile materials called metal-organic frameworks might be good systems in which to search for quantum spin liquids. Read More »

More Articles