Synopsis: An invisible gateway

Thanks to illusion optics, an open channel across a metamaterial slab is made invisible to light incident from the left.
Synopsis figure
Credit: C. Li et al., Phys. Rev. Lett. (2010)

In 2009, a team of researchers led by Che-Ting Chan at the Hong Kong University of Science and Technology theorized on using transformation optics and complementary media to produce optical illusion devices that change the optical response of an object into that of another object. Illusion optics, the science of making an object appear as something else, or reappear elsewhere in space, or even disappear altogether (cloaking) is full of exciting possibilities, pending experimental realization.

In a paper in Physical Review Letters, Chao Li and co-workers at the Chinese Academy of Sciences, Beijing, and colleagues at Soochow University, China, and Hong Kong University of Science and Technology, experimentally demonstrate the first illusion-optics device. They trick light to miss an open channel across a slab at a frequency range of interest, rendering the channel into an electromagnetically invisible gateway. Li et al.’s design involves carving out an open channel across a metamaterial slab that behaves as a perfect electric conductor, then replacing a trapezoidal region of the slab adjacent to the channel with another metamaterial having the exact opposite dielectric properties. This “double-negative” region complements the dielectric space inside the channel into an optically equivalent region that behaves as a perfect electric conductor, thereby giving the appearance of a blocked gateway to light that attempts to go through.

Li et al. use a transmission-line approach that allows them to design metamaterials with the desired optical properties and with minimal losses. Their illusion-optics prototype works at around 50MHz and has a 15MHz bandwidth. – Manolis Antonoyiannakis


More Features »


More Announcements »

Subject Areas


Previous Synopsis


Success without pressure

Read More »

Next Synopsis

Biological Physics

Cells push, cells pull

Read More »

Related Articles

Viewpoint: Photonic Hat Trick

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

Focus: <i>Image</i>—Sound Waves Guided Along Curvy Path
Condensed Matter Physics

Focus: Image—Sound Waves Guided Along Curvy Path

A new image from 3D computer simulations demonstrates that tiny, randomly arranged pillars can allow an acoustic wave to be efficiently guided through an arbitrarily shaped channel. Read More »

Synopsis: A Neat Way to Slow Down Light

Synopsis: A Neat Way to Slow Down Light

A new technique slows down light in a crystal by simply shining a laser on it and varying an applied voltage. Read More »

More Articles