Synopsis: A question of size

Just how small is the proton?
Synopsis figure
Credit: David Ellis

The charge radius of the proton is one of nature’s fundamental parameters. Its currently accepted CODATA (Committee on Data for Science and Technology) value, 0.8768×10-15m, has been determined primarily by measurements of the hydrogen Lamb shift and, to lesser accuracy, by electron-proton scattering experiments. This value has recently been called into question by a research team at the Paul Scherrer Institut (PSI) in Villigen, Switzerland. By measuring the Lamb shift in muonic hydrogen, these researchers obtained a value of 0.8418×10-15m for the charge radius, five standard deviations below the CODATA value.

In a paper appearing in Physical Review Letters, the A1 Collaboration has determined the electric and magnetic form factors of the proton with higher statistics and precision than previously known, using the Mainz (Germany) electron accelerator MAMI (Mainz Microtron) to measure the electron-proton elastic-scattering cross section. Both form factors show structure at Q2 mπ2 that may indicate the influence of the proton’s pion cloud. But, in addition, the collaboration’s extracted value for the charge radius agrees completely with the CODATA value. The discrepancy between “electron-based” measurements and the recent PSI “muon-based” measurement thus remains a puzzle. – Jerome Malenfant


Features

More Features »

Announcements

More Announcements »

Subject Areas

Particles and Fields

Previous Synopsis

Soft Matter

Mechanical proteins

Read More »

Next Synopsis

Related Articles

Viewpoint: Trapped Ions Test Fundamental Particle Physics
Atomic and Molecular Physics

Viewpoint: Trapped Ions Test Fundamental Particle Physics

New precision experiments using trapped molecular ions provide an alternative method for determining if the electron has an electric dipole moment. Read More »

Synopsis: Dark Photon Conjecture Fizzles
Particles and Fields

Synopsis: Dark Photon Conjecture Fizzles

The lack of so-called “dark photons” in electron-positron collision data rules out scenarios in which these hypothetical particles explain the muon’s magnetic moment. Read More »

Viewpoint: A Doubly Charming Particle
Particles and Fields

Viewpoint: A Doubly Charming Particle

High-precision experiments at CERN find a new baryon containing two charm quarks. Read More »

More Articles