Synopsis: Progress toward an antihydrogen beam

Cold antihydrogen has been synthesized in a setup that could lead to an antihydrogen beam suitable for precision CPT tests.
Synopsis figure
Credit: Y. Enomoto et al., Phys. Rev. Lett. (2010)

Since cold antihydrogen (H¯) was created in 2002, the top priority has been to make enough atoms and corral them to measure their spectra. Spectral differences between H and H¯ would signal a violation of the fundamental CPT (charge-parity-time) symmetry.

An alternative to trapping is to actively extract antihydrogen into a beam that is then sent into a microwave cavity for spectroscopy measurements. This approach also allows the high-precision measurements to be done far from any ill effects of the magnetic fields used to nudge the antiprotons and positrons into binding.

The ASACUSA collaboration at CERN has now taken an important step toward this goal. In a paper appearing in Physical Review Letters, the team demonstrates they can create H¯ atoms in an experimental apparatus that could ultimately generate a beam. They used a so-called cusp trap, which consists of a pair of anti-Helmholtz coils (one coil is reversed from the usual Helmholtz configuration) and a series of ring electrodes that surround the coil axis.

After pulses of positrons and antiprotons entered along the axis of their setup, the team mixed them in a “nested trap” within the upstream half of the apparatus. A neutral H¯ created there could escape, but if it was created in a highly excited (Rydberg) state and drifted downstream, it would soon become ionized in a stronger electric field, leaving an antiproton that would become trapped.

By opening this second trap and counting the accumulated antiprotons, the team estimated that their system converts between 2% and 7% of incoming antiprotons into antihydrogen in high Rydberg states. They are now working toward creating a spin-polarized antihydrogen beam for high-precision CPT tests. – David Ehrenstein


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Biological Physics

Cells push, cells pull

Read More »

Next Synopsis

Soft Matter

Adapting to habitat

Read More »

Related Articles

Viewpoint: Sharpening the Features of Optical Lattices
Atomic and Molecular Physics

Viewpoint: Sharpening the Features of Optical Lattices

Lasers trap cold atoms in a lattice of potential barriers much narrower than the lasers’ wavelength. Read More »

Focus: <i>Video</i>—Condensate Duo Puts on a Show
Atomic and Molecular Physics

Focus: Video—Condensate Duo Puts on a Show

Simulations of the mixing of two oppositely polarized Bose-Einstein condensates produce fingering patterns that look like those of classical fluids. Read More »

Viewpoint: Atoms Oscillate Collectively in Large Optical Lattice
Atomic and Molecular Physics

Viewpoint: Atoms Oscillate Collectively in Large Optical Lattice

By coupling atoms in an optical lattice to a thin elastic membrane, researchers have demonstrated a dynamic instability that is evidence of collective atomic motion. Read More »

More Articles