Synopsis: Progress toward an antihydrogen beam

Cold antihydrogen has been synthesized in a setup that could lead to an antihydrogen beam suitable for precision CPT tests.
Synopsis figure
Credit: Y. Enomoto et al., Phys. Rev. Lett. (2010)

Since cold antihydrogen (H¯) was created in 2002, the top priority has been to make enough atoms and corral them to measure their spectra. Spectral differences between H and H¯ would signal a violation of the fundamental CPT (charge-parity-time) symmetry.

An alternative to trapping is to actively extract antihydrogen into a beam that is then sent into a microwave cavity for spectroscopy measurements. This approach also allows the high-precision measurements to be done far from any ill effects of the magnetic fields used to nudge the antiprotons and positrons into binding.

The ASACUSA collaboration at CERN has now taken an important step toward this goal. In a paper appearing in Physical Review Letters, the team demonstrates they can create H¯ atoms in an experimental apparatus that could ultimately generate a beam. They used a so-called cusp trap, which consists of a pair of anti-Helmholtz coils (one coil is reversed from the usual Helmholtz configuration) and a series of ring electrodes that surround the coil axis.

After pulses of positrons and antiprotons entered along the axis of their setup, the team mixed them in a “nested trap” within the upstream half of the apparatus. A neutral H¯ created there could escape, but if it was created in a highly excited (Rydberg) state and drifted downstream, it would soon become ionized in a stronger electric field, leaving an antiproton that would become trapped.

By opening this second trap and counting the accumulated antiprotons, the team estimated that their system converts between 2% and 7% of incoming antiprotons into antihydrogen in high Rydberg states. They are now working toward creating a spin-polarized antihydrogen beam for high-precision CPT tests. – David Ehrenstein


Features

More Features »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Biological Physics

Cells push, cells pull

Read More »

Next Synopsis

Soft Matter

Adapting to habitat

Read More »

Related Articles

Synopsis: Three-Body Problem Solved for 1D Boson Trio
Atomic and Molecular Physics

Synopsis: Three-Body Problem Solved for 1D Boson Trio

Three research groups have solved the three-body problem for bosons confined in a one-dimensional system. Read More »

Synopsis: Atoms Put On a Bloch Party
Atomic and Molecular Physics

Synopsis: Atoms Put On a Bloch Party

Bloch oscillations—first predicted to occur for electrons in a crystal—have been observed in an optical lattice containing ultracold atoms. Read More »

Synopsis: Fitting a Bose-Einstein Condensate inside an Atom
Atomic and Molecular Physics

Synopsis: Fitting a Bose-Einstein Condensate inside an Atom

A giant Rydberg atom enveloping thousands of ordinary atoms could be used to study ion-atom interactions at ultralow temperatures. Read More »

More Articles