Synopsis: Plasmonics guide the way to entanglement

A new plasmonic route to long-distance entanglement is proposed.
Synopsis figure
Credit: Alejandro Gonzalez-Tudela and Diego Martin-Cano

Quantum entanglement, the process whereby physically separated quantum systems become linked so that the quantum description of one system requires knowledge of the other, has brought about exciting new physics and promising applications in quantum computing, quantum cryptography, and teleportation. For practical implementations of quantum computing, however, entanglement over long distances between qubits remains a key challenge. The usual route to overcome this involves photons, but now, writing in Physical Review Letters, Alejandro Gonzalez-Tudela and colleagues at the Universidad Autonoma de Madrid and the Universidad de Zaragoza, both in Spain, propose an alternative, plasmonic route toward long-distance entanglement.

In their scheme, a surface plasmon mode mediates the entanglement between two qubits sitting on the opposite edges of a milled groove in a silver film, which acts as a one-dimensional plasmonic waveguide. Through subwavelength light confinement in the waveguide, a large fraction of the radiation emitted from one qubit is captured by the waveguide’s propagating mode and transferred to the other qubit. Gonzalez-Tudela et al. derive analytical expressions for the coherent and incoherent parts of the coupling between the qubits. Crucially, they obtain a phase shift of π/2 between the coherent and incoherent parts, which allows them to switch off one of the two contributions while maximizing the other by altering the interqubit distance. This allows a plasmonic route to entanglement of qubits over distances larger than the operating wavelength. – Manolis Antonoyiannakis


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Next Synopsis

Fluid Dynamics

Patterns of breakup

Read More »

Related Articles

Focus: Longer Movies at Four Trillion Frames per Second
Optics

Focus: Longer Movies at Four Trillion Frames per Second

A new technique produces long-lasting movies of nonluminous objects with just a few hundred femtoseconds between frames. Read More »

Synopsis: Quantum Optomechanics in a Liquid
Optics

Synopsis: Quantum Optomechanics in a Liquid

Quantum optomechanical effects have been observed for the first time using a liquid—superfluid helium—confined in an optical cavity. Read More »

Synopsis: Ultrafast Oscilloscope for Ultrashort Electron Beam
Particles and Fields

Synopsis: Ultrafast Oscilloscope for Ultrashort Electron Beam

Driving an electron beam into a helical pattern with terahertz electromagnetic pulses allows researchers to measure the beam’s complete shape with femtosecond resolution. Read More »

More Articles