Synopsis: Chemistry class

Precision x-ray measurements hone in on a more accurate value of Avogadro’s constant.
Synopsis figure
Credit: B. Andreas et al., Phys. Rev. Lett. (2011)

The Avogadro constant—the number of atoms in one mole of an element—provides a link between the atomic and macroscopic properties of matter. One state-of-the-art method for improving the accuracy of this fundamental constant is to use precision x-ray crystallography of highly crystalline silicon spheres: one obtains Avagadro’s number from the ratio of the volume of a mole of silicon (known from its mass) relative to that of a single unit cell in the crystal.

This technique has, however, been plagued by large measurement uncertainties. The main difficulty is accurately determining the isotopic composition of a natural silicon crystal, a key measurement for determining the Avogadro constant. In a paper published in Physical Review Letters, Birk Andreas at Physikalisch-Technische Bundesanstalt in Braunschweig, Germany, with colleagues in Europe and the US report on x-ray studies with a silicon crystal highly enriched with the silicon-28 isotope. They compare their results with several others and show a significant improvement in the accuracy of the Avogadro constant, which they determine to be 6.02214078(18)×1023 with 3.0×10-8 relative uncertainty. Their technique may even allow us to find a replacement for the current platinum-iridium prototype for the value of the kilogram. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular Physics

Previous Synopsis

Optics

What lies beneath

Read More »

Next Synopsis

Soft Matter

Grainy picture

Read More »

Related Articles

Viewpoint: A Multimode Dial for Interatomic Interactions
Optics

Viewpoint: A Multimode Dial for Interatomic Interactions

A tunable multimode optical cavity modifies interactions between atomic condensates trapped in its interior from long range to short range, paving the way towards exploring novel collective quantum phenomena. Read More »

Synopsis: Twisted Cavity Is a One-Way Light Path
Atomic and Molecular Physics

Synopsis: Twisted Cavity Is a One-Way Light Path

A cavity containing spin-polarized atoms can serve as an optical isolator that breaks time-reversal symmetry by letting only forward-moving light pass.   Read More »

Synopsis: Nuclear Masses Don’t Add Up
Atomic and Molecular Physics

Synopsis: Nuclear Masses Don’t Add Up

The sum of the proton and deuteron masses minus the helium-3 nucleus mass, obtained from a measurement with a molecular ion, remains at odds with the number calculated from accepted values for these masses. Read More »

More Articles