Synopsis: Magnetism shortly before pairing

A new pnictide-type superconductor is discovered with heavy electrons ordering antiferromagnetically and light electrons in a superconducting state.
Synopsis figure
Credit: H. Mizoguchi et al., Phys. Rev. Lett. (2011)

In an article published in Physical Review Letters, Hiroshi Mizoguchi and collaborators from the Tokyo Institute of Technology and the National Institute for Materials Science in Japan report the discovery of a new pnictide-type superconductor, CeNi0.8Bi2, which exhibits a superconducting transition at around 4K.

Structurally similar to the intensely studied pnictide superconductor LaFeAsO, this material consists of alternating layers of bismuth and CeNiBi. The parent stoichiometric compound CeNiBi2 displays antiferromagnetic order, but not superconductivity. In these materials, interlayer interactions alter the effective mass of the mobile charge carriers that are present in each layer. In the case of CeNi0.8Bi2, Mizoguchi et al. report that light electrons reside in the bismuth layers, while the CeNiBi layers host heavy electrons, with a remarkably large difference between the effective masses of both species. What is particularly interesting in this material is that the heavy electrons order at about 5K to an antiferromagnetic state, while the light carriers pair to form a superconducting state at about 4K. – Alex Klironomos


Features

More Features »

Announcements

More Announcements »

Subject Areas

Superconductivity

Previous Synopsis

Next Synopsis

Optics

It takes two

Read More »

Related Articles

Synopsis: Putting a Spin on the Josephson Effect
Superconductivity

Synopsis: Putting a Spin on the Josephson Effect

Researchers demonstrate spin splitting of localized electronic states, called Andreev bound states, in a superconducting device. Read More »

Viewpoint: Pushing Towards Room-Temperature Superconductivity
Condensed Matter Physics

Viewpoint: Pushing Towards Room-Temperature Superconductivity

Two independent studies report superconductivity at record high temperatures in hydrogen-rich materials under extreme pressure. Read More »

Synopsis: Giving Vortices a Spin
Spintronics

Synopsis: Giving Vortices a Spin

A proposed method for transporting spin from one place to another utilizes superconducting vortices as carriers of spin information. Read More »

More Articles