Synopsis: A few good photons

Nonclassical light may provide a more efficient readout mechanism than its classical counterpart in the regime of few photons.
Synopsis figure
Credit: Adapted from iStockphoto.com/spooh

States of an electromagnetic field are called classical when they can be expressed as probabilistic sums of coherent states. Such states describe almost all sources of radiation in everyday technology. By contrast, no such appropriate sum of coherent states can be found for a nonclassical or quantum state. Investigating such states is the business of modern quantum optics laboratories.

Writing in Physical Review Letters, Stefano Pirandola of the University of York, UK, proposes an idealized quantum readout mechanism that takes advantage of the quantum nature of nonclassical states. He describes a digital memory device reminiscent of optical storage media like a DVD.

In his model, digital information is stored in cells with two different reflectivities, representing the two values of a bit. Each cell is then irradiated by light subsequently measured by detectors. When the mean number of photons for each cell is fixed at a low number, the author’s calculations indicate that a nonclassical source of light retrieves significantly more information than a classical one.

Better data transfer at the “few photon” level should give us optical disks that spin faster. This work may also lead to the safe readout of photodegradable memory devices, such as dye-based optical disks or photosensitive microfilms, using faint quantum light to retrieve the data safely, where classical light would be destructive. – Sami Mitra


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Biological Physics

Are eccentric cells better scouts?

Read More »

Next Synopsis

Astrophysics

Hyperon stars

Read More »

Related Articles

Focus: Modeling Imperfections Boosts Microscope Precision
Optics

Focus: Modeling Imperfections Boosts Microscope Precision

A theoretical model of light spreading and scattering improves precision of position and size measurements made with an optical microscope by as much as 100 times. Read More »

Synopsis: Attosecond X-Ray Flashes
Optics

Synopsis: Attosecond X-Ray Flashes

X-ray free-electron lasers have been used to generate single spikes of hard x rays that are only 200 attoseconds long. Read More »

Synopsis: A Lens to Focus Spins
Quantum Information

Synopsis: A Lens to Focus Spins

A quantum bit stored in the spin excitation of an atomic cloud could be “focused” onto the quantum state of a single atom. Read More »

More Articles