Synopsis: Hidden simplicity

A compelling explanation for the abnormal metallic behavior of cuprate superconductors says they are described by a theory that is hidden in an unphysical world.
Synopsis figure
Credit: David Ellis

After more than twenty years of intense research on high-temperature cuprate superconductors, volumes of data have been amassed detailing the behavior of these fascinating materials. Versatile shapeshifters, the cuprates change from an insulator, to a superconductor, to a “strange” metal (that is, a metal that can’t be described as a Fermi liquid), all within a relatively narrow range of temperatures and carrier doping. The comprehensive description of this clash of different phases of matter is a formidable task at the heart of modern condensed-matter physics. In particular, no theory has managed to consistently describe the properties of the strange metal within one framework.

Now, in a paper appearing in Physical Review Letters, Philip Casey and Philip Anderson of Princeton University generalize the hidden Fermi-liquid theory, which they developed in their earlier work, to provide a self-consistent description of the strange metal state. Their theory offers a natural explanation of a variety of spectroscopic and transport experiments on cuprates.

Casey and Anderson’s idea is based on the ansatz that the strange metal phase of the cuprates is described by an ordinary, well-understood Fermi-liquid theory that exists, but which is hidden in an unphysical Hilbert space (an analog of a Platonic world). In this picture, projecting the familiar Fermi liquid back into the physical world (i.e., making a measurement) converts the Fermi liquid into the experimentally observed strangeness. If Casey and Anderson’s theory withstands further experimental scrutiny, it will surely be a leap forward in our understanding of the cuprates. – Alex Klironomos


More Features »


More Announcements »

Subject Areas

SuperconductivityStrongly Correlated Materials

Previous Synopsis

Plasma Physics

Big science in a small space

Read More »

Next Synopsis

Biological Physics

Are eccentric cells better scouts?

Read More »

Related Articles

Synopsis: Graphene Helps Catch Light Quanta

Synopsis: Graphene Helps Catch Light Quanta

The use of graphene in a single-photon detector makes it dramatically more sensitive to low-frequency light. Read More »

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer
Condensed Matter Physics

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer

A team of experimentalists and theorists proposes a scalable protocol for quantum computation based on topological superconductors. Read More »

Viewpoint: Sensing Magnetic Fields with a Giant Quantum Wave
Strongly Correlated Materials

Viewpoint: Sensing Magnetic Fields with a Giant Quantum Wave

A refined version of a Bose-Einstein-condensate microscope detects static magnetic fields near the surface of a chip with unprecedented sensitivity and over a wide temperature range. Read More »

More Articles