Synopsis: A tale of two nucleic acids

Subtle differences in how RNA and DNA behave in solutions may lead to better therapies.
Synopsis figure
Credit: N. J. Reiter, L. J. Maher III, and S. E. Butcher, Nucl. Acids Res. 36, 1227 (2008)
Image is Figure 6c from http://nar.oxfordjournals.org/content/36/4/1227.full. The article was published under CC (“unrestricted non-commercial use, distribution, and reproduction in any medium”) license. Please cite appropriately.

The information-bearing biological molecules, DNA and RNA, both coil into negatively charged double helices when complimentary strands pair up. But under conditions where positive ions from the surroundings allow double-stranded DNA to condense from solution, double-stranded RNA stays dissolved. The difference illustrates the subtlety of the biologically significant interactions between these molecules.

The messenger RNA that transfers genetic information from DNA into protein sequence consists of a single strand. But in other biological roles, RNA forms paired chains with complementary sequences, like its DNA cousin. The slightly different chemical backbone of RNA leads to a different double-helix structure, however. Using small-angle x-ray scattering, Li Li and colleagues from Cornell University had previously found that this structure allows triply charged positive ions to screen the negative charge more efficiently in RNA than in DNA. But in Physical Review Letters, the group reports that even though double-stranded RNAs associate more readily, they remain in solution in conditions where double-stranded DNA condenses. The researchers find that two rather different models of how the molecules and ions nest together can make sense of this surprising observation.

Clarifying how the detailed interactions sometimes lead to condensation should help biologists to characterize the many biological functions of RNA, and could also help researchers devise better ways to deliver double-stranded RNA to cells for therapy. – Don Monroe


Features

More Features »

Subject Areas

Biological Physics

Previous Synopsis

Atomic and Molecular Physics

Clocking the last century

Read More »

Next Synopsis

Interdisciplinary Physics

Cathedral’s invisible earthquake damage

Read More »

Related Articles

Focus: Fluid Interactions Help Fish in a School Swim Faster
Fluid Dynamics

Focus: Fluid Interactions Help Fish in a School Swim Faster

Simulations of fish schools that include fluid dynamics in addition to the usual coordination of individuals lead to faster swimmers and reveal a new collective swimming mode. Read More »

Synopsis: Untying DNA Knots
Biological Physics

Synopsis: Untying DNA Knots

Experiments demonstrate that stretching a DNA strand can untie any knots it contains. Read More »

Focus: Why Your Pupils Wobble
Biological Physics

Focus: Why Your Pupils Wobble

A model that describes eye behavior during and after a sudden gaze shift could help improve the interpretation of eye motion measurements for cognitive tests and eye-tracking studies. Read More »

More Articles