Synopsis: A tale of two nucleic acids

Subtle differences in how RNA and DNA behave in solutions may lead to better therapies.
Synopsis figure
Credit: N. J. Reiter, L. J. Maher III, and S. E. Butcher, Nucl. Acids Res. 36, 1227 (2008)
Image is Figure 6c from http://nar.oxfordjournals.org/content/36/4/1227.full. The article was published under CC (“unrestricted non-commercial use, distribution, and reproduction in any medium”) license. Please cite appropriately.

The information-bearing biological molecules, DNA and RNA, both coil into negatively charged double helices when complimentary strands pair up. But under conditions where positive ions from the surroundings allow double-stranded DNA to condense from solution, double-stranded RNA stays dissolved. The difference illustrates the subtlety of the biologically significant interactions between these molecules.

The messenger RNA that transfers genetic information from DNA into protein sequence consists of a single strand. But in other biological roles, RNA forms paired chains with complementary sequences, like its DNA cousin. The slightly different chemical backbone of RNA leads to a different double-helix structure, however. Using small-angle x-ray scattering, Li Li and colleagues from Cornell University had previously found that this structure allows triply charged positive ions to screen the negative charge more efficiently in RNA than in DNA. But in Physical Review Letters, the group reports that even though double-stranded RNAs associate more readily, they remain in solution in conditions where double-stranded DNA condenses. The researchers find that two rather different models of how the molecules and ions nest together can make sense of this surprising observation.

Clarifying how the detailed interactions sometimes lead to condensation should help biologists to characterize the many biological functions of RNA, and could also help researchers devise better ways to deliver double-stranded RNA to cells for therapy. – Don Monroe


Features

More Features »

Announcements

More Announcements »

Subject Areas

Biological Physics

Previous Synopsis

Atomic and Molecular Physics

Clocking the last century

Read More »

Next Synopsis

Interdisciplinary Physics

Cathedral’s invisible earthquake damage

Read More »

Related Articles

Synopsis: Sorting Blood Cells via Their Stiffness
Biological Physics

Synopsis: Sorting Blood Cells via Their Stiffness

A proposed modification to a microfluidic cell-sorting device could separate cells by their deformability, an important marker for several diseases. Read More »

Synopsis: Optimum Wings for Flying Fruits
Biological Physics

Synopsis: Optimum Wings for Flying Fruits

Whirling fruits have evolved wing-like structures that are optimized to generate maximum lift, according to a new study. Read More »

Synopsis: Mapping a Tumor’s Mechanical Properties with Light
Biological Physics

Synopsis: Mapping a Tumor’s Mechanical Properties with Light

A new experiment uses a light probe to measure the mechanical response of a tumor, which provides information about its anatomy and the efficacy of therapeutic agents. Read More »

More Articles