Synopsis: Tuning in to gravity

Tests of an early design for a gravity-wave detector determine sensitivity limits in a new frequency window.
Synopsis figure
Credit: M. Ando et al., Phys. Rev. Lett. 105, 161101 (2010)

Depending on their source, gravity waves—never-detected ripples in spacetime that result from massive accelerating bodies—could appear at almost any frequency. Each gravity-wave detector is designed to be sensitive over a different stretch of the spectrum. Now, writing in Physical Review Letters, a team of scientists in Japan describes early tests of a detector that is sensitive over a frequency range not currently completely captured by others.

Last year, Masaki Ando, at Kyoto University, and colleagues proposed building a detector that senses gravity waves by tracking the relative angle between two suspended bar-masses. This torsion-bar antenna, or “TOBA,” would be sensitive to gravity waves between 1mHz and 1Hz, a frequency range below that of the ground-based detector LIGO, but above that of the proposed space-based interferometer LISA.

In a first test of their detector’s sensitivity, the same group has designed a mini-version consisting of an upside-down T-shaped bar (about 22cm across). A magnet on one end of the bar allows the team to suspend the mass, free of contact, from a superconducting pivot, while a laser interferometry setup tracks the deflections in the bar.

The miniature TOBA provides an early estimate of the detector’s sensitivity, but the team expects three more stages of design before they scale up to a final version with 10-m-wide bars. – Jessica Thomas


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Quantum Information

Early detection

Read More »

Next Synopsis

Atomic and Molecular Physics

Time doesn’t stand still

Read More »

Related Articles

Synopsis: Turning up the Ringdown

Synopsis: Turning up the Ringdown

Stacking up gravitational-wave “ringdown” signals from a set of black hole mergers increases the sensitivity of the signals to black hole properties. Read More »

Synopsis: Soothing Quantum Effects  
Quantum Physics

Synopsis: Soothing Quantum Effects  

Quantum-mechanical effects may remove some unphysical features of spacetime predicted by classical general relativity.   Read More »

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure

Focus: Hard and Soft Bounces Explain Asteroid’s Surface Structure

Experiments and computer simulations show that the segregation of small and large rocks on an asteroid’s surface can arise from the way particles hitting the surface collide with the rocks already present. Read More »

More Articles