Synopsis: Preventive circuitry

In transistor circuits, preventing logical errors with physical fault tolerance is more efficient than correcting errors with a fault-tolerant architecture.
Synopsis figure
Credit: Sami Mitra

The electronics industry’s access to smarter, lighter, and more powerful devices depends on whether transistor circuits—the building blocks of such devices—can process large amounts of information. As circuits get faster and smaller, errors—arising from heat dissipation, noise, and structural disorder—in the physical information they process can impede development. Experts debate on whether to concentrate on inherent physical fault tolerance that prevents error generation, or on architectural fault tolerance that corrects errors by sophisticated algorithms.

Writing in Physical Review Letters, Thomas Szkopek at McGill University, Canada, and colleagues in the US quantify these error-suppressing processes for model nanoelectronic systems. Using the electron number as the dimensionless size parameter for logic gates, they estimate the minimum number of electrons necessary for reliable circuit logic. They find that the physical fault tolerance in transistor circuits suppresses the error rate per electron number exponentially, compared to only subexponential suppression of error rate in the most efficient fault-tolerant architecture of logical gates. Their conclusion—that error prevention is better than error correction—has implications for transistor device technologies and CMOS scaling, and may impose a minimum limit on the size of devices. – Manolis Antonoyiannakis


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationSemiconductor PhysicsNanophysics

Previous Synopsis

Atomic and Molecular Physics

Time doesn’t stand still

Read More »

Next Synopsis

Fluid Dynamics

Fruit flies swim through air

Read More »

Related Articles

Viewpoint: Seeing Scrambled Spins
Atomic and Molecular Physics

Viewpoint: Seeing Scrambled Spins

Two experimental groups have taken a step towards observing the “scrambling” of information that occurs as a many-body quantum system thermalizes.   Read More »

Viewpoint: Type-II Dirac Fermions Spotted
Quantum Information

Viewpoint: Type-II Dirac Fermions Spotted

Three separate groups report experimental evidence of novel type-II Dirac quasiparticles, suggesting possible applications in future quantum technology. Read More »

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer
Condensed Matter Physics

Viewpoint: A Roadmap for a Scalable Topological Quantum Computer

A team of experimentalists and theorists proposes a scalable protocol for quantum computation based on topological superconductors. Read More »

More Articles