Synopsis: Preventive circuitry

In transistor circuits, preventing logical errors with physical fault tolerance is more efficient than correcting errors with a fault-tolerant architecture.
Synopsis figure
Credit: Sami Mitra

The electronics industry’s access to smarter, lighter, and more powerful devices depends on whether transistor circuits—the building blocks of such devices—can process large amounts of information. As circuits get faster and smaller, errors—arising from heat dissipation, noise, and structural disorder—in the physical information they process can impede development. Experts debate on whether to concentrate on inherent physical fault tolerance that prevents error generation, or on architectural fault tolerance that corrects errors by sophisticated algorithms.

Writing in Physical Review Letters, Thomas Szkopek at McGill University, Canada, and colleagues in the US quantify these error-suppressing processes for model nanoelectronic systems. Using the electron number as the dimensionless size parameter for logic gates, they estimate the minimum number of electrons necessary for reliable circuit logic. They find that the physical fault tolerance in transistor circuits suppresses the error rate per electron number exponentially, compared to only subexponential suppression of error rate in the most efficient fault-tolerant architecture of logical gates. Their conclusion—that error prevention is better than error correction—has implications for transistor device technologies and CMOS scaling, and may impose a minimum limit on the size of devices. – Manolis Antonoyiannakis


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationSemiconductor PhysicsNanophysics

Previous Synopsis

Atomic and Molecular Physics

Time doesn’t stand still

Read More »

Next Synopsis

Fluid Dynamics

Fruit flies swim through air

Read More »

Related Articles

Viewpoint: Photonic Hat Trick
Optics

Viewpoint: Photonic Hat Trick

Two independent groups have provided the first experimental demonstration of genuine three-photon interference. Read More »

Synopsis: Small Particles Untangle Polymer Chains
Soft Matter

Synopsis: Small Particles Untangle Polymer Chains

Adding nanoparticles to molten polymer disentangles its constituent molecular chains, allowing them to flow more easily. Read More »

Viewpoint: Microwave Quantum States Beat the Heat
Quantum Information

Viewpoint: Microwave Quantum States Beat the Heat

A new quantum communication protocol is robust in the presence of thermal noise, paving the way for all-microwave quantum networks. Read More »

More Articles