Synopsis: Reluctant swimmers

The swimming motion of organisms in complex fluids is hindered by elasticity.

Microorganisms routinely live in complex fluids such as mud, intestinal fluid, and mucus. In this world of varying rheological properties, organisms propagate with a motion analogous to swimming. Think of spermatozoa propelled by undulations of flagella. Researchers have known that the properties of a fluid strongly affect how the organisms swim in it—the beat of a spermatozoon’s flagella, for example, goes from sinusoidal in an “ordinary” Newtonian fluid to asymmetric in a viscoelastic fluid, a medium that shows both solid- and fluid-like behavior—but quantitative studies have been scarce.

In a paper in Physical Review Letters, Xiaoning Shen and Paulo E. Arratia, at the Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, report usage of video microscopy and velocimetry methods to measure body kinematics and swimming dynamics of a species of roundworm in a range of shear viscosities and viscoelasticities. They find that the fluid elasticity hinders swimming speed as well as efficiency. This result is surprising, if only because myriad biological processes occur in such fluids. Examples range from sperms in the female reproductive tract to allergens in the respiratory passage. The authors find that the roundworm’s swimming speed is reduced by up to 35% compared to that in ordinary fluids. This work provides a valuable experimental benchmark for what appears to be a ubiquitous phenomenon. – Sami Mitra


More Features »


More Announcements »

Subject Areas

Fluid DynamicsBiological Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Steps toward a new quantum fluid

Read More »

Related Articles

Focus: Superpropulsion of Liquid Drops
Fluid Dynamics

Focus: Superpropulsion of Liquid Drops

An oscillating surface can propel a drop of water or a springy ball upward at a speed higher than that of the moving surface. Read More »

Synopsis: Teaching Fish How to Swim
Fluid Dynamics

Synopsis: Teaching Fish How to Swim

A new model of swimming fish and cetaceans pinpoints the parameters that matter most for efficient motion. Read More »

Focus: Bacteria Form Waveguides
Biological Physics

Focus: Bacteria Form Waveguides

A laser beam sent through a suspension of marine bacteria pulls the organisms into the beam, which focuses the light. Read More »

More Articles