Synopsis: QED passes with flying colors

Precision measurements of the electron magnetic moment in hydrogenlike silicon provide a stringent test of bound-state quantum electrodynamics.
Synopsis figure
Credit: Courtesy of S. Sturm et al.

An important early test of quantum electrodynamics (QED)—the theory that quantizes the interaction of light and matter—was predicting the gyromagnetic ratio (g factor) of a free electron. Now, with a precise measurement of the g factor of an electron in a hydrogenlike orbit around the silicon nucleus, scientists in Germany report in Physical Review Letters the most stringent test to date of QED applied to a bound particle.

The g factor is a dimensionless ratio that relates a particle’s magnetic moment in a field to its spin or orbital angular momentum. According to QED, an electron bound to an atom has a g factor that deviates from a value close to 2 by terms that depend on the ion’s nuclear charge and the fine structure constant (α1/137). The lowest-order corrections have been confirmed in lighter elements, like carbon and oxygen. To see higher-order effects of QED, Sven Sturm at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, and colleagues used a sequence of three magnetoelectric (Penning) traps to strip away all but one of silicon’s fourteen electrons and measured the ratio of the spin precession frequency of the remaining electron and the cyclotron frequency of the ion.

The team established the bound electron’s g factor to an unprecedented certainty—enough to see QED contributions of less than a tenth of a millionth of a percent. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

Atomic and Molecular PhysicsParticles and Fields

Previous Synopsis

Next Synopsis

Fluid Dynamics

Bacteria, live in 3D

Read More »

Related Articles

Synopsis: An Expanding Universe in the Lab
Atomic and Molecular Physics

Synopsis: An Expanding Universe in the Lab

The rapid expansion of a Bose-Einstein condensate can mimic the expansion of the Universe. Read More »

Viewpoint: Homing in on Axions?
Particles and Fields

Viewpoint: Homing in on Axions?

A search for dark matter axions with unprecedented sensitivity tests a previously inaccessible parameter range for these hypothetical particles. Read More »

Focus: Neutrinos with a Single Energy
Particles and Fields

Focus: Neutrinos with a Single Energy

Neutrinos in a beam have a wide range of energies, but a new trick allowed researchers to isolate fixed-energy neutrinos, which can improve the precision in future experiments. Read More »

More Articles