Synopsis: No privilege for earthly observers

The idea that the observed expansion of the universe is related to our unique vantage point—as opposed to dark energy—seems to be inconsistent with telescope data.
Synopsis figure
Credit: R. R. Caldwell, Phys. Rev. Lett. 100, 191302 (2008)

According to most cosmologists, there is nothing special about us as observers of the universe. Still, some theories shirk this so-called Copernican principle, suggesting that the universe is not homogenous. Rather, these theories explain the observed accelerated expansion of the universe without invoking dark energy, and instead assume we are near the center of a void, beyond which denser matter pulls outwards.

In a paper appearing in Physical Review Letters, Pengjie Zhang at the Shanghai Astronomical Observatory and Albert Stebbins at Fermilab show that a popular void model, and many others aiming to replace dark energy, don’t stand up against telescope observation.

Galaxy surveys show the universe is homogeneous, at least on length scales up to a gigaparsec. Zhang and Stebbins argue that if larger scale inhomogeneities exist, they should be detectable as a temperature shift in the cosmic microwave background—relic photons from about 400,000 years after the big bang—that occurs because of electron-photon (inverse Compton) scattering. Focusing on the “Hubble bubble” void model, they show that in such a scenario, some regions of the universe would expand faster than others, causing this temperature shift to be greater than what is expected. But telescopes that study the microwave background, such as the Atacama telescope in Chile or the South Pole telescope, don’t see such a large shift.

Though they can’t rule out more subtle violations of the Copernican principle, Zhang and Stebbins’ test sets a high bar for future models to pass. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

AstrophysicsCosmology

Previous Synopsis

Strongly Correlated Materials

Majorana states thrive under interactions

Read More »

Next Synopsis

Related Articles

Synopsis: Black Hole Test for Gravity
Gravitation

Synopsis: Black Hole Test for Gravity

Researchers test a key element of the theory of gravity in the strongest gravitational field to date—that produced by the supermassive black hole at the center of the Milky Way. Read More »

Synopsis: Rocks May Hold Dark Matter Fossils
Cosmology

Synopsis: Rocks May Hold Dark Matter Fossils

If dark matter interactions occurred inside ancient rocks, they could have left detectable traces in the rocks’ crystal structure. Read More »

Synopsis: Galactic Spirals May Form Spontaneously
Astrophysics

Synopsis: Galactic Spirals May Form Spontaneously

Spiral galaxies could be transient, nonequilibrium structures originating from the collapse of clouds of matter interacting solely through self-gravity.   Read More »

More Articles