Synopsis: Magnetoelastic coupling in iron superconductors

A microscopic theoretical model brings insight into the underlying physics behind the complex magnetic and structural transitions of some pnictide superconductors.
Synopsis figure
Credit: I. Paul, Phys. Rev. Lett. (2011)

The members of the iron pnictide family based on FeAs and the iron chalcogenide Fe1+xTe, exhibit interwoven magnetic and structural transitions as a function of temperature. These transitions are suppressed and give way to superconductivity when the materials are doped or subjected to pressure. A standing mystery is the different wave vectors for the modulation of the experimentally observed antiferromagnetic orders in these systems. Given the similarity of the underlying electronic band structures, the observation of an antiferromagnetic order apparently incompatible with the Fermi surface topology in Fe1+xTe is not understood.

Now, in an article published in Physical Review Letters, Indranil Paul at the Institut Néel in Grenoble, France, presents a microscopic model that provides important clues about the underlying physics. In particular, he shows that quantum fluctuations induced by the coupling of magnetic and elastic degrees of freedom associated with the distortion of the crystal lattice within a two-dimensional metal cause the different modulation of the antiferromagnetic order in Fe1+xTe. In addition, he shows that similar effects lead to the observed orthorhombic structural transition in the vicinity of the magnetic ordering for the FeAs-based materials. – Alex Klironomos


More Features »


More Announcements »

Subject Areas


Previous Synopsis

Next Synopsis


Nano knitting

Read More »

Related Articles

Viewpoint: A Polka-Dot Pattern Emerges in Superfluid Helium

Viewpoint: A Polka-Dot Pattern Emerges in Superfluid Helium

A surprising two-dimensional pattern appears in superfluid helium-3 when the liquid is confined to a micrometer-thick cell and exposed to a magnetic field. Read More »

Synopsis: Putting a Spin on the Josephson Effect

Synopsis: Putting a Spin on the Josephson Effect

Researchers demonstrate spin splitting of localized electronic states, called Andreev bound states, in a superconducting device. Read More »

Viewpoint: Pushing Towards Room-Temperature Superconductivity
Condensed Matter Physics

Viewpoint: Pushing Towards Room-Temperature Superconductivity

Two independent studies report superconductivity at record high temperatures in hydrogen-rich materials under extreme pressure. Read More »

More Articles