Synopsis: The quantum side of detectors

By applying environmental noise to a photon detector, researchers have identified the boundary where the device switches from a quantum device to a classical one.
Synopsis figure
V. D’Auria et al., Phys. Rev. Lett. (2011)

In quantum physics, a particle can occupy separate states at the same time, but once measured—or disturbed by the environment—it must choose a particular state in which to reside. The dynamics of this process, called decoherence, has been extensively studied over the years. Recently, physicists have investigated a process reminiscent of this phenomenon, not for a quantum state but for a measurement apparatus. A new experiment reported in Physical Review Letters has quantified how robust the quantum nature of detectors is.

Physicists have been able to characterize the quantum behavior of different photon counters by observing the detector response to a variety of photon inputs. When this data is mapped to a kind of probability distribution, some of the probabilities turn up negative, which is a telltale quantum signature.

Virginia D’Auria and her colleagues at the Kastler Brossel Laboratory in Paris, France, wanted to test the quantum limits of such photon detectors. To follow this process and observe the transition of the device from the quantum to the classical world, the researchers applied varying levels of noise to the detector. They showed that the characteristic negative probability values disappeared when the noise increased to roughly half the detector’s efficiency. – Michael Schirber


Features

More Features »

Announcements

More Announcements »

Subject Areas

Quantum InformationOptics

Previous Synopsis

Nanophysics

Nano knitting

Read More »

Next Synopsis

Related Articles

Viewpoint: X-Ray Probe Targets Interfaces
Optics

Viewpoint: X-Ray Probe Targets Interfaces

A new spectroscopy technique employs x rays from a free electron laser to measure the properties of interfaces that may be hidden within a material. Read More »

Viewpoint: A Multimode Dial for Interatomic Interactions
Optics

Viewpoint: A Multimode Dial for Interatomic Interactions

A tunable multimode optical cavity modifies interactions between atomic condensates trapped in its interior from long range to short range, paving the way towards exploring novel collective quantum phenomena. Read More »

Synopsis: A Doubly  Curved Light Wave
Optics

Synopsis: A Doubly Curved Light Wave

Using a combination of light-bending techniques, researchers have demonstrated a light beam that accelerates in a curved space. Read More »

More Articles