Synopsis: Topological catalysis

Protected surface states of topological insulators could be exploited to enhance surface reaction dynamics.
Synopsis figure
H. Chen et al., Phys. Rev. Lett. (2011)

When they occur at the surface of a material, electronic states are most vulnerable to contamination and defects. One of the fascinating aspects of the recently discovered topological insulators—materials that are bulk insulators but have conducting surface states—is the robustness of the surface states to perturbations. While this property has mostly been a signature of a topological insulator, an intriguing idea is to exploit this robustness for studying the physics of surface interactions.

In a paper published in Physical Review Letters, Hua Chen from the University of Tennessee and collaborators report a theoretical study of carbon monoxide oxidation. Using density-functional calculations, they find that the robust topological surface states significantly enhance the adsorption energy for both carbon monoxide and oxygen molecules. Effectively, the topological surface states act as an electron bath, making oxygen molecules more prone to dissociate on the gold-covered topological insulator, something oxygen does not do on pure gold. These findings have potential implications for surface science as well as catalysis. – Daniel Ucko


Features

More Features »

Subject Areas

Semiconductor PhysicsChemical Physics

Previous Synopsis

Next Synopsis

Atomic and Molecular Physics

Dirac points multiply in the presence of a BEC

Read More »

Related Articles

Synopsis: Device to Probe Electron-Phonon Interactions
Semiconductor Physics

Synopsis: Device to Probe Electron-Phonon Interactions

Researchers use a cavity-coupled double quantum dot to study electron-phonon interactions in a nanowire. Read More »

Viewpoint: Heaviest Element Has Unusual Shell Structure
Nuclear Physics

Viewpoint: Heaviest Element Has Unusual Shell Structure

Calculations of the structure in oganesson—the element with the highest atomic number—reveal a uniform, gas-like distribution of its electrons and nucleons. Read More »

Synopsis: Reflectivity of Ultrathin Mirror Switches with Voltage
Semiconductor Physics

Synopsis: Reflectivity of Ultrathin Mirror Switches with Voltage

Researchers designed an atomically thin mirror with electronically switchable reflectivity that could be useful in optoelectronic circuits.   Read More »

More Articles