Synopsis: A light-matter laser squeezed into a nanowire

In nanowire form, semiconductor lasers that rely on the coherent scattering of polaritons produce light with less energy.
Synopsis figure
A. Das et al., Phys. Rev. Lett. (2011)

Before a typical laser can shine, a minimum (threshold) amount of energy needs to be pumped into an optical amplifying medium to create a so-called population inversion of the light emitters. Now, a paper appearing in Physical Review Letters shows this threshold energy for polariton lasers, a new type of semiconductor laser, could be significantly reduced if the laser is fashioned from a nanowire.

Polaritons are light-matter hybrids. These particles form when light, confined to a cavity, couples strongly to an excited electron-hole pair (exciton) within the cavity. Unlike conventional lasers, polariton lasers don’t require a population inversion and stimulated emission. Instead, a quantum coherent state of exciton-polaritons, which are bosons, is generated by stimulated polariton-polariton scattering. This polariton state generates coherent light when the excitons spontaneously recombine. Thus, in a conventional laser the emission is stimulated, while in a polariton laser it is the scattering that is stimulated.

Low-threshold polariton lasers that work at room temperature have been made from bulk gallium-nitride (GaN) sandwiched between two semiconductor mirrors. In their new work, Ayan Das and his colleagues at the University of Michigan in Ann Arbor were able to significantly reduce the threshold energy of such lasers by replacing the bulk GaN with a GaN nanowire, 60 nanometers (nm) in diameter and 750 nm long. The improvement occurs because nanowires can be prepared with few defects and a uniform distribution of gallium and nitrogen, while the geometry of the wire ensures a strong interaction between the light and the excitons. – Jessica Thomas


Features

More Features »

Announcements

More Announcements »

Subject Areas

OpticsSemiconductor Physics

Previous Synopsis

Soft Matter

Diffusion in a membrane

Read More »

Next Synopsis

Materials Science

A floating apothecary

Read More »

Related Articles

Focus: <i>Image</i>—Cooperating Lasers Make Topological Defects
Nonlinear Dynamics

Focus: Image—Cooperating Lasers Make Topological Defects

A circle of interacting lasers is a new model system for exploring topological defects, disordered structures that show up in a wide variety of seemingly unrelated systems. Read More »

Viewpoint: Inducing Transparency with a Magnetic Field
Optics

Viewpoint: Inducing Transparency with a Magnetic Field

A magnetic field applied to an atomic sample in an optical cavity generates optical transparency that could be used to enhance the frequency stability of lasers. Read More »

Focus: <i>Image</i>—Honeycomb Diffraction
Photonics

Focus: Image—Honeycomb Diffraction

Predictions of diffraction patterns for honeycomb photonic crystals were part of a comprehensive study of these structures that may be useful in nanoscale photonic devices. Read More »

More Articles